摘要
触发控制策略对于多级同步感应线圈发射器至关重要。然而,随着线圈级数的增多以及电枢速度的提高,触发时序控制和功率调节变得更加复杂,而传统的位置触发策略或时间触发策略的控制效果不尽人意。为此,该文结合多级同步感应线圈发射器的系统微分方程和控制方程,提出了一种自适应设计策略。其核心思想是近似认为相邻级线圈的等效单匝电感相等,进而可根据上一级线圈尺寸计算下一级线圈的匝数,并对该级线圈尺寸进行修正,而线圈的触发时序则取决于线圈中心与电枢尾部的相对位置。基于该策略,以25级同步感应线圈发射器为例,对其结构参数和触发时序进行了自适应设计,并通过与有限元法仿真结果的对比证明了该自适应设计策略的有效性和准确性。此外,该文定量分析了上升距离和转差速度对发射性能的影响,从而为两者的选择和优化提供了参考依据。
Trigger control strategy is critical for the multi-stage synchronous induction coil launcher (SICL). However, with the increase of the number of stages and armature speed, the trigger timing control and power regulation becomes more complicated, while the control effect of the traditional position trigger strategy or the time trigger strategy is unsatisfactory. Therefore, a kind of adaptive design strategy is proposed in this paper, which combines the systematic differential equations and governing equations of SICL. The main idea is to approximate that the equivalent single-turn inductance of two adjacent coils is equal, furthermore, the turn number of next stage driving coil is calculated according to the size of the upper-stage coil, and then modify the size of the coil. The triggering sequence is determined by the relative position of the coil center and the armature tail. Taking a 25 stages SICL as an example, the structural parameters and triggering timing are designed adaptively, and the validity and accuracy of the adaptive design strategy are proved by comparing with the simulation results of the finite element method (FEM). In addition, the influence of the rise length and slip speed on the launch performance is quantitatively analyzed, which provides a reference for their selection and optimization.
作者
牛小波
刘开培
张亚东
肖贞仁
龚宇佳
Niu Xiaobo;Liu Kaipei;Zhang Yadong;Xiao Zhenren;Gong Yujia(School of Electrical Engineering Wuhan University Wuhan 430072 Chin)
出处
《电工技术学报》
EI
CSCD
北大核心
2018年第15期3644-3650,共7页
Transactions of China Electrotechnical Society
基金
国家自然科学基金(51407130)
教育部支撑计划项目(62501040409)资助
关键词
同步感应线圈发射器
自适应设计
有限元法
上升距离
转差速度
Synchronous induction coil launcher
adaptive design
finite element method
rise length
slip speed