期刊文献+

基于K-means算法的非均匀网格化空间采样分布优化

K-means Algorithm Based on Non-uniform Mesh Spatial Sampling Distribution Optimization
下载PDF
导出
摘要 电磁环境地图构建中所用到的空间采样方法多种多样。传统的均匀网格化采样,数据点的选取比较规则,均匀分布在各个传感器节点,方便电磁地图的构建。当区域大量存在有规律的空间分布模式时,采用此采样方式则会得出片面的结果,我们提出了一种非均匀网格化采样分布,该方法是在具有一定相似特征的区域内选取一个具有代表性的数据点,区域的形状大小不统一规定,而是根据各个数据点的特征将其聚类。聚成多类之后,选取各个类的中心点作为数据采样点。经过仿真验证和实地数据测量,可以看出数据点的选取符合非均匀网格化采样,证明了该方法的可行性和有效性。 In the process of the construction of the electromagnetic environment map,various sampling methods are used.For the traditional uniform grid sampling,the selection of data points is rules,evenly distributed in each node. But when the spatial distribution of the regional landscape abundant regular pattern,using the sampling will be one-sided results,so we put forward a non-uniform grid sampling distribution,characteristics of this method is similar in a certain area to select a representative data points,the shape of the area size is not uniform,according to the features of each data point to the cluster.After clustering,select the center points of each class as data sampling points. Through simulation and field measurement data,we can see that the selection of data points in non-uniform grid sampling,and proves the feasibility and veracity.
作者 徐炜 薛红 邵尉 XU Wei;XUE Hong;SHAO Yu(Army Engineering University,Communication Engineering Institute,Nanjing 210000,China)
出处 《电声技术》 2018年第4期48-51,共4页 Audio Engineering
关键词 电磁环境地图 K-MEANS 迭代聚类 Electromagnetic environment map K - means Iterative clustering
  • 相关文献

参考文献1

二级参考文献11

  • 1陆声链,林士敏.基于距离的孤立点检测研究[J].计算机工程与应用,2004,40(33):73-75. 被引量:44
  • 2李业丽,秦臻.一种改进的k-means算法[J].北京印刷学院学报,2007,15(2):63-65. 被引量:9
  • 3Mac Q J. Some methods for classification and analysis of mult- ivariate observations [ C ]//In: Proc. 5th Berkeley Symposium in Mathematics. Berkeley, USA : Univ of California, 1967. 被引量:1
  • 4GUHA S, RASTOGI R, SHIM K. CURE: An efficient clustering algorithm for large databases [ C ]//Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1998: 73-84. 被引量:1
  • 5Ester,Martin, Hans Peter Kriegel, et al. A Density Based Algoriihm for Discovering Clusters in Large Spatial Databases with Noise [ C ]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining(KDD-96). Ortland,Oregon: [ s. n. ] ,.1996. 被引量:1
  • 6Wang W, Yang J, Muntz R. STING : A Statistical Information Grid Approach to Spatial Data Mining[ C ]//Proc. of 1997 Intl. Conf. on Very Large Databases. Athens, Greece : [ s. n. ], 1997 : 186-195. 被引量:1
  • 7Kohonen T. Self -- organized Formation of Topologically Correct Feature Maps [ J ]. Biological Cybernetics, 1982,43 ( 1 ) : 59 -69. 被引量:1
  • 8连凤娜,吴锦林,唐琦.一种改进的K-means聚类算法[J].电脑与信息技术,2008,16(1):38-40. 被引量:23
  • 9苏锦旗,薛惠锋,詹海亮.基于划分的K-均值初始聚类中心优化算法[J].微电子学与计算机,2009,26(1):8-11. 被引量:34
  • 10步媛媛,关忠仁.基于K-means聚类算法的研究[J].西南民族大学学报(自然科学版),2009,35(1):198-200. 被引量:23

共引文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部