期刊文献+

基于维分量簇中心为初始中心的多维k-means聚类算法

Multi Dimensional k-means Algorithm Based on the Clustering Center Value of Each Dimension
下载PDF
导出
摘要 数据挖掘中对多维数据的处理时空见惯,分析了传统k-means的不足,通过维简约、聚类前孤点排除,降低数据样本的复杂度与孤点对聚类结果的影响,以数据空间中各维分量的聚类中心作为聚类初始中心值.通过实验结果分析,改进后的k-means算法能在很大程度上提高多维聚类的效率与聚类质量. The processing of multidimensional data in data mining become a common occurrence.This paper analyzes the lack of traditional k-means,through dimension reducing and eliminating outlier before clustering then proposes a new algorithm of using the clustering center value of each dimension as the initial center of the clustering of all data space.Experiments results show the efficiency and clustering quality of this algorithm in clustering.
作者 孙平安
出处 《曲阜师范大学学报(自然科学版)》 CAS 2012年第4期65-69,共5页 Journal of Qufu Normal University(Natural Science)
基金 武夷学院青年教师专项科研基金(XQ201110)
关键词 K-MEANS 多维数据 维简约 孤点排除 k-means multi data dimension reducing eliminating outlier
  • 相关文献

参考文献11

  • 1周卫星,廖欢.基于K均值聚类和概率松弛法的图像区域分割[J].计算机技术与发展,2010,20(2):68-70. 被引量:10
  • 2MacQ J. Some methods for classification and analysis of multivariate observations [ C ].//In : P roc. 5th Berkeley Symposium in Mathematics. Berkeley, USA : Univ of Ca li- fornia, 1967. 被引量:1
  • 3GUHA S, RASTOGIR, SHIMK. CURE: An efficient cluste- ring algorithm for large databases [ C ]//Proceedings of the 1998 ACM SIGMOD International Conference on Manage- ment of Data. New York: ACM Press, 1998: 73-84. 被引量:1
  • 4Ester, Martin, Hans Peter Kriege, let al. A Density Based Algorithm for Discovering Clusters in Large Spatial Data- bases with Noise [ C ]//Proceedings of the 2nd International Conference on Knowledge Discovery and DataM ining (KDD-96). Ortland, Oregon: [ s. n. ], 1996. 被引量:1
  • 5Wang W,Yang J, Muntz R. ST ING: A Statistical Informa- tion Grid Approach to Spatial Data Mining [ C ] //Proc of 1997 Intl Conf on Very Large Databases. Athens, Greece: [s. n. ] ,1997: 186-195. 被引量:1
  • 6Kohonen T. Self-Organized Formation of Topologically Cor- rect Feature Maps [ J]. Biological Cybernetics, 1982, 43 ( 1 ) :59-69. 被引量:1
  • 7JiaweiHan,MichelineKamber.数挖掘概念与技术(第2版)[M].范明,孟小峰译.北京:机械工业出版社,2008.251-283. 被引量:1
  • 8周爱武,于亚飞.K-Means聚类算法的研究[J].计算机技术与发展,2011,21(2):62-65. 被引量:134
  • 9万小军,杨建武,陈晓鸥.文档聚类中k-means算法的一种改进算法[J].计算机工程,2003,29(2):102-103. 被引量:29
  • 10陆声链,林士敏.基于距离的孤立点检测研究[J].计算机工程与应用,2004,40(33):73-75. 被引量:44

二级参考文献36

  • 1陆声链,林士敏.基于距离的孤立点检测研究[J].计算机工程与应用,2004,40(33):73-75. 被引量:44
  • 2李业丽,秦臻.一种改进的k-means算法[J].北京印刷学院学报,2007,15(2):63-65. 被引量:9
  • 3MacQueen J. Some methods for classification and analysis of multivariate observations[ D]. Berkeley, Calif. :University of California Press, 1967. 被引量:1
  • 4Huang Z. Extensions to the k- means algorithm for clustering large data sets with categorical values [ J ]. Data Mining and Knowledge Discovery, 1998(2) : 283 - 304. 被引量:1
  • 5Zucker S W. Relaxation Processes for Scene Labeling: Convergence,Speed, and Stability [J ]. IEEE trans, on SMC, 1978 (1):41-48. 被引量:1
  • 6Rcsenfeld A, Hummel R A, Zucker S W. Scene labeling by relaxation operations [ J ]. IEEE Trans. Syst. Man Cybem, 1976,6 : 420 - 453. 被引量:1
  • 7GARBAY C. Image Structure Representation and Proccssing A Discussion of Some Segmentation Methods in Cytology[ J ] IEEE Tran. on PAMI, 1986,8(2) : 140 - 146. 被引量:1
  • 8Mac Q J. Some methods for classification and analysis of mult- ivariate observations [ C ]//In: Proc. 5th Berkeley Symposium in Mathematics. Berkeley, USA : Univ of California, 1967. 被引量:1
  • 9GUHA S, RASTOGI R, SHIM K. CURE: An efficient clustering algorithm for large databases [ C ]//Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York: ACM Press, 1998: 73-84. 被引量:1
  • 10Ester,Martin, Hans Peter Kriegel, et al. A Density Based Algoriihm for Discovering Clusters in Large Spatial Databases with Noise [ C ]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining(KDD-96). Ortland,Oregon: [ s. n. ] ,.1996. 被引量:1

共引文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部