期刊文献+

基于K-means聚类算法的研究 被引量:22

Research of clustering algorithm based on K-means
下载PDF
导出
摘要 原始的k-means算法[4]是从样本点的集合中随机选取K个中心,这种选取具有盲目性和随意性,它在很大程度上决定了算法的有效性.为消除选取初始中心的盲目性,应充分利用已有数据样本点的信息.采取对数据进行预处理的方式来选取初始中心.实验证明新的初始点的选取不仅提高了算法的计算效率,也提高了算法最终确定的聚类的精度. Original k-means clustering algorithm is the means that selects K centers randomly from the data sample cluster .This selection is blind and random, and to a certain extent the validity of algorithm lies on the selection. In order to avoid the blindness of selection, we should make full use of the information of existing data sample dot. We make pre-treatment of the data to choose the initial center. The experiment improves not only the calculation efficiency of algorithm, but also the precision of ultimate clustering.
出处 《西南民族大学学报(自然科学版)》 CAS 2009年第1期198-200,共3页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 数据挖掘 聚类 K-MEANS算法 聚类中心 data mining clustering K-means clustering center
  • 相关文献

参考文献5

二级参考文献14

  • 1陆声链,林士敏.基于距离的孤立点检测研究[J].计算机工程与应用,2004,40(33):73-75. 被引量:44
  • 2袁方,孟增辉,于戈.对k-means聚类算法的改进[J].计算机工程与应用,2004,40(36):177-178. 被引量:47
  • 3Han J W Kamber M 范明 孟小峰译.数据挖掘概念与技术[M].北京:机械工业出版杜,2001.147-158. 被引量:113
  • 4MacQueen J.Some Methods for Classification and Analysis of Multivariate Observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability,1967. 被引量:1
  • 5Wang Wei,Yang Jiong,Muntz R.STING:A Statistical Information Grid Approach to Spatial Data Mining[C]//Proc.of the 23rd International Conference on Very Large Data Bases,1997. 被引量:1
  • 6Agrawal R,Gehrke J,Gunopulcs D.Automatic Subspace Clustering of High Dimensional Data for Data Mining Application[C]//Proc.of ACM SIGMOD Intconfon Management on Data,Seattle,WA,1998:94-205. 被引量:1
  • 7Guha S,Rastogi R,Shim K.Cure:An Efficient Clustering Algorithm for Large Database[C]//Proc.of ACM-SIGMOND Int.Conf.Management on Data,Seattle,Washington,1998:73-84. 被引量:1
  • 8Kaufan L, Rousseeuw Pj. Finding Groups in Data: an Introduction to Cluster Analysis[M]. New York: John Wiley & Sons, 1990. 被引量:1
  • 9Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databased[C]. In Haas LM, Tiwary A eds. Proceedings of the ACM SIGMOD International Conference on Management of Data, Sesttle: ACM Press, 1998:73-84. 被引量:1
  • 10Kurniawan A, Benech N, Tao Yufei. Towards High-dimensional Clustering [ J ]. COMP, November 1999 : 1-2. 被引量:1

共引文献205

同被引文献141

引证文献22

二级引证文献190

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部