摘要
Porcine reproductive and respiratory syndrome virus(PRRSV) shows characteristic antibody-dependent enhancement(ADE) of infection and causes porcine systemic inflammation, which is similar to a type I allergic reaction; however, the role of porcine FceεRI in ADE is still unclear. In this study, the expression of different Fc receptors(Fc Rs) on macrophages was investigated in a PRRSV 3D4/21 cell infection model in the presence or absence of PRRSV antibody. The transcription level of Fcc II and FceεRI was significantly up-regulated under PRRSV-antibody complex infection. Internalization and proliferation of PRRSV were promoted by the ADE mechanism when FceεRI was expressed in permissive 3D4/21 cells and the non-permissive cell line HEK 293T. Transcriptome sequencing data showed that the expression levels of AKT,ERK and other signal molecules in the anti-inflammatory pathway were significantly increased, especially in the cells infected with the PRRSV-antibody immune complex. Inflammatory regulatory molecules such as PLA2G6, LOX, TRPM8 and TRPM4 were significantly up-regulated following PRRSV infection but significantly down-regulated in the cells infected with the PRRSV-antibody immune complex. Our results demonstrated that FceεRI could be involved in PRRSV ADE, the antigen presenting process and regulation of the inflammatory response during PRRSV infection, which provides new insights into PRRSV infection mediated by FceεRI and the PRRSV-antibody immune complex.
Porcine reproductive and respiratory syndrome virus(PRRSV) shows characteristic antibody-dependent enhancement(ADE) of infection and causes porcine systemic inflammation, which is similar to a type I allergic reaction; however, the role of porcine FceεRI in ADE is still unclear. In this study, the expression of different Fc receptors(Fc Rs) on macrophages was investigated in a PRRSV 3D4/21 cell infection model in the presence or absence of PRRSV antibody. The transcription level of Fcc II and FceεRI was significantly up-regulated under PRRSV-antibody complex infection. Internalization and proliferation of PRRSV were promoted by the ADE mechanism when FceεRI was expressed in permissive 3D4/21 cells and the non-permissive cell line HEK 293T. Transcriptome sequencing data showed that the expression levels of AKT,ERK and other signal molecules in the anti-inflammatory pathway were significantly increased, especially in the cells infected with the PRRSV-antibody immune complex. Inflammatory regulatory molecules such as PLA2G6, LOX, TRPM8 and TRPM4 were significantly up-regulated following PRRSV infection but significantly down-regulated in the cells infected with the PRRSV-antibody immune complex. Our results demonstrated that FceεRI could be involved in PRRSV ADE, the antigen presenting process and regulation of the inflammatory response during PRRSV infection, which provides new insights into PRRSV infection mediated by FceεRI and the PRRSV-antibody immune complex.
基金
supported by the National Natural Science Foundation of China (31272540)
the underprop project of Tianjin Science and Technology Committee in China (16YFZCNC00640)