期刊文献+

基于DRLSE模型的SAR溢油提取方法 被引量:3

SAR oil-spill extraction method based on DRLSE model
下载PDF
导出
摘要 为提高海上溢油轮廓SAR提取精度,验证了FCM(Fuzzy C-Means Algorithm)与DRLSE(Distance Regularized Level Set Evolution)模型结合的方法提取SAR溢油信息的有效性;鉴于其无法避免细小噪音的影响以及薄油膜提取效果不好的问题,提出了阈值和DRLSE模型结合的溢油信息提取方法,通过阈值构建溢油区域初始轮廓,克服了图像细小噪声对溢油提取的影响,更有利于提取薄油膜信息,溢油提取精度优于H/A/alpha-Wishart非监督分类方法和FCM与DRLSE模型结合的方法。 In this study, we evaluated the SAR information extraction of oil spilled at sea and the effectiveness of combining the fuzzy C-means (FCM) and distance regularized level set evolution (DRLSE) models to extract SAR oil-spill information. In light of the inability of this approach to prevent small-noise effects and its poor thin-oilfilm extraction performance, we propose a method for extracting oil-spill information that combines threshold data and the DRLSE model. With this method, the initial contour of the oil-spill region is constructed based on the threshold, which overcomes the influence of small noises on the oil extraction, and the extraction of thin-oil-film information is facilitated. Our method demonstrates better oil-extraction precision than the H/A/alpha-Wishart unsupervised classification method and the combined FCM and DRLSE models.
作者 刘善伟 王婉笛 李潇 陈艳拢 张婷 LIU Shan-wei;WANG Wan-di;LI Xiao;CHEN Yan-long;ZHANG Ting(China University of Petroleum,Qingdao 266580,China;National Marine Environmental MonitoringCenter,Dalian 116023 China;First Institute of Oceanography,State Oceanic Administration,Qingdao 266061,China)
出处 《海洋科学》 CAS CSCD 北大核心 2018年第1期153-157,共5页 Marine Sciences
基金 国家重点研发计划项目(2017YFC1405600) 国家自然科学基金(41706208 41776182) 山东省自然科学基金(ZR2016DM16)~~
关键词 DRLSE模型 SAR 溢油提取 阈值 DRLSE model SAR oil spill extraction threshold
  • 相关文献

参考文献5

二级参考文献27

  • 1娄安刚,奚盘根,黄祖珂,石磊,王学昌.海面溢油轨迹的分析与预报[J].青岛海洋大学学报(自然科学版),1994,24(4):477-484. 被引量:20
  • 2杨娜,赵朝方.星载红外数据应用于大型事故溢油[J].地理空间信息,2006,4(2):63-65. 被引量:8
  • 3《数学手册》编写组.数学手册[M].北京:高等教育出版社,2006. 被引量:9
  • 4Lee J S, Grunes M R, Grandi G D. Polarimetric SAR speckle filtering and its implication for classification [J ]. IEEE Transactions on Geoscience and Remote Sensiog, 1999, 5: 2363-2373. 被引量:1
  • 5Brekke C, Solberg A H S. Oil spill detection by sateilite remote sensing [J]. Remote Sensing of Environment, 2005, 1: 1-13. 被引量:1
  • 6Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification [J]. IEEE Transactions on Systems Man and Cybernetics, 1973, 6: 610-621. 被引量:1
  • 7Gade M. Signature of oceanic surface films on synthetic aerture radar (SAR) images [EB/OL]. http://www, ifm. uni-hamburg, de/ cleanseas/examples/cs_ sat. htm, 1998. 被引量:1
  • 8Konings H. Oil pollution monitoring on the North Sea [J]. Technical Note Spill Science and Technology Bulletin 1996, 3 : 47-52. 被引量:1
  • 9Alpers W, Mimik L, Hock L, et al. The tropical and subtropical ocean viewed by ERS SAR [EB/OL]. http://www, ifm. uni-hamburg, de/- ers-sar/Sdata/oceanic/oilpol/yellowsea/index, html, 1998. 被引量:1
  • 10Solberg A H S, Dokken S T, Solberg R. Automatic detection of oil spill in ERS SAR images [J ]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 4: 1916-1924. 被引量:1

共引文献27

同被引文献14

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部