期刊文献+

一种基于加权图模型的手指静脉识别方法 被引量:1

A finger-vein recognition method based on weighted graph model
原文传递
导出
摘要 提出一种基于加权图模型的手指静脉网络特征描述方法。对于一幅手指静脉图像,通过图像划分获得图的顶点集,利用三角剖分获得图的边集,边的权重由边所连接顶点之间的特征相似度决定。通过这种方式,一幅手指静脉图像可转化为一个加权图,并通过度量加权图邻接矩阵之间的相似度实现手指静脉识别。详细研究影响识别结果的几个因素,并通过试验证明了该方法的有效性。 A new weighted graph construction method was proposed for finger-vein network representation. For a weighted graph,its nodes and edges were respectively generated by dividing image into blocks and a triangulation algorithm,and the weights of edges were valued using the feature similarities between adjacent blocks. In this way,a finger-vein image could be represented by a weighted graph,and the adjacency matrix of this weighted graph was used for finger-vein recognition. The experiment results proved the effectiveness of the method,and some important factors that affected graph recognition results were discussed in detail.
作者 叶子云 杨金锋 YE Ziyun;YANG Jinfeng(College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China;Tianjin Key Lab for Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China)
出处 《山东大学学报(工学版)》 CAS 北大核心 2018年第3期103-109,共7页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(61379102 U1433120 61502498) 中央高校基本科研业务费专项资金资助项目(3122017001)
关键词 手指静脉识别 加权图 图论 特征提取 finger-vein recognition weighted graph structure graph theory feature extraction
  • 相关文献

参考文献2

二级参考文献33

  • 1Phillips PJ,Grother P,Micheals RJ,Blackburn DM,Tabassi E,Bone JM.Face recognition vendor test 2002 results.Evaluation Report,2003. 被引量:1
  • 2Phillips PJ,Syed HM,Rizvi A,Rauss PJ.The FERET evaluation methodology for face-recognition algorithms.IEEE Trans.on Pattern Analysis and Machine Intelligence,2000,22(10):1090-1104. 被引量:1
  • 3Brunelli R,Poggio T.Face recognition:features vs.templates.IEEE Trans.on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1053. 被引量:1
  • 4Turk M,Pentland A.Face recognition using eigenfaces.In:Negahdaripour S,et al.,eds.Proc.of the IEEE Conf.on Computer Vision and Pattern Recognition.Maui:IEEE Computer Society Press,1991.586-591. 被引量:1
  • 5Belhumer P,Hespanha P,Kriegman D.Eigenfaecs vs fisherfaces:Recognition using class specific linear projection.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):711-720. 被引量:1
  • 6Porat M,Zeevi Y.The generalized Gabor scheme of image representation in biological and machine vision.IEEE Trans.on Pattern Analysis and Machine Intelligence,1988,10(4):452-468. 被引量:1
  • 7Wiskott L,Fellous JM,Kruger N,Malsburg C.Face recognition by elastic bunch graph matching.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):775-779. 被引量:1
  • 8Liu CJ,Wechsler H.Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition.IEEE Trans.on Image Processing,2002,11(4):467-476. 被引量:1
  • 9Shan SG.Study on some key issuses in face recognition[Ph.D.Thesis].Beijing:Institute of Computing Technology,the Chinese Academy of Sciences,2004 被引量:1
  • 10Vapnik VN,Write; Zhang XG,Trans.The Nature of Statistical Learning Theory.Beijing:Tsinghua University Press,2000. 被引量:1

共引文献82

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部