期刊文献+

数据出版新进展 被引量:16

Progress in data publishing
原文传递
导出
摘要 【目的】对数据出版的发展现状和趋势进行分析和展望。【方法】将与数据出版密切相关的利益相关方归结为三类,即政府机构与资助主体、出版商/出版者(包括数据期刊)、数据存储库及数据管理平台,采用文献调研、网站调研、政策报告分析、博客内容跟踪等方式对其近3年的发展状况进行梳理。【结果】政府机构和资助主体对数据出版持积极态度,并不断加强基础设施建设;对出版者而言,数据出版范畴正不断扩展,各种类型、体量、阶段的科研产出都将被视为数据进行出版;数据存储库尤其是通用型数据存储库对数据出版的服务能力不断增强。【结论】围绕数据出版的各利益相关方均在促进数据出版发展方面展开积极有效的探索。 [Purposes] This paper aims to investigate the current status of data publishing and explore its development trends.[Methods]Stakeholders closely related to data publishing were grouped into three categories: the government agencies and funding agencies,the publishers/data journals,and the data repositories and data management platforms. We sorted out the progress in the last three years of the three stakeholders by investigating and analyzing the literatures, websites, policy reports, and blog information. [Findings] Government agencies and funding agencies have a positive attitude on data publishing and try to strengthen the construction of the data infrastructure. The category of data publishing is extended by publishers and journals. The research output of each stage,various phases,and different sizes will be published as data. Data repositories,especially the generalist repositories,are improving their services capabilities for data publishing. [Conclusions] Various stakeholders around data publishing have actively and effectively explored the development path of newtypes of data publishing.
作者 张恬 刘凤红 ZHANGTian;LIU Fenghong(Scientific Journal and Knowledge Service Center, National Science Library, Chinese Academy of Sciences, 33 Beisihuan Xilu, Zhongguancun, Haidian District, Beijing 100190, China)
出处 《中国科技期刊研究》 CSSCI 北大核心 2018年第5期453-459,共7页 Chinese Journal of Scientific and Technical Periodicals
基金 中国科学院文献情报中心"指向性人才计划"基金 中国科学院文献情报中心一三五新型出版重点培育项目(Y160661001)
关键词 开放科学 数据出版 数据期刊 数据存储库 Open science Data publishing Data journal Data repository
  • 相关文献

参考文献2

二级参考文献40

  • 1Vision TJ. Open data and the social contract of scientific publishing. Bioscience, 2010, 60 (5) : 330 - 331. 被引量:1
  • 2Huang XL, Qiao G. Biodiversity databases should gain support from journals. Trends in Ecology & Evolution, 2011, 26(8) : 377 -378. 被引量:1
  • 3Molloy JC. The open knowledge foundation: Open data means better science. Plos Biology, 2011, 9(12) : e1001195. 被引量:1
  • 4Whitlock MC. Data archiving in ecology and evolution: best practices. Trends in Ecology & Evolution, 2011, 26(2) : 61 -65. 被引量:1
  • 5Reichman OJ, Jones MB, Schildhauer MP. Challenges and opportunities of open data in ecology. Science, 2011, 331 (6018) : 703 - 705. 被引量:1
  • 6Hampton SE, Strasser CA, Tewksbury JJ et al. Big data and the future of ecology. Frontiers in Ecology and the Environment, 2013, 11(3): 156-162. 被引量:1
  • 7Pensoft data publishing policies and guidelines for biodiversity data. [EB/OL] [ 2014-06-20]. http://www, pensoft, net/J_FILES/ Pensoft_Data_Publishing_Policies and Guidelines. pdf. 被引量:1
  • 8Cassey P, Blackburn TM. Reproducibility and repeatability in ecology. Bioseience, 2006, 56 ( 12 ) : 958 - 959. 被引量:1
  • 9Giles J. The trouble with replication. Nature, 2006, 442(7101 ) : 344 - 347. 被引量:1
  • 10Instruction for data paper of ESA. [ EB/OL ] [ 2014-06-20 ]. http ://www. esapubs, org/arehive/instmet_d, htm. 被引量:1

共引文献61

同被引文献210

引证文献16

二级引证文献158

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部