期刊文献+

Q-mKP系列流方程的等价形式 被引量:6

Equivalent Formulas for Flow Equations of Q-mKP Hierarchy
下载PDF
导出
摘要 Q-形变的modified Kadomtsev-Petviashvili(q-mKP)系列是经典mKP系列的量子化推广,其流方程包括无穷多个微分方程簇,流方程的等价形式是一个广为关注的问题.类似于对mKP系列的研究,尝试沿着Sato理论框架,基于其Lax算子、Lax方程,给出该可积系列流方程的等价形式,这些结果显示出q-mKP系列与mKP系列的不同,并不是mKP系列的简单,是进一步探讨其递归算子、代数约束等可积性质的基础. The q-deformed modified Kadomtsev Petviashvili (q-mKP) hierarchy is the quantum deformation of classical mKP hierarchy. The flow equations of q mKP hierarchy contain infinite differential equations. The equivalent formulas for the flow equations of q mKP hierarchy attract many attentions. It is the aim of the present article to give the equivalent formulas for flow equations of q mKP hierarchy via I.ax operator and I.ax equation in Sato theory. These results show that q mKP hierarchy is not a trivial formalism generalization of the mKP hierarchy. There exist at least several topics needed to be discussed in order to research the integrability property of q mKP hierarchy based on the results in the paper. For instance, the recursion operator for the flow equations of q mKP hierarchy; the algebraic constraint for q mKP hierarchy.
作者 张秋晨 ZHANG Qiu chen(School of Mathematics, Hefei University of Technology, Hefei 230009, Chin)
出处 《大学数学》 2018年第2期26-30,共5页 College Mathematics
基金 国家自然科学基金(11671371) 安徽省自然科学基金(1608085MA04)
关键词 q-mKP系列 Lax方程 流方程 q-mKP hierarchy I.ax equation flow equation
  • 相关文献

参考文献2

二级参考文献49

  • 1Klimyk, A. and Schmfidgen, K., Quantum Groups and Their Representations, Springer-Verlag, Berlin, 1997. 被引量:1
  • 2Kac, V. and Cheung, P., Quantum Calculus, Springer-Verlag, New York, 2002. 被引量:1
  • 3Zhang, D. H., Quantum deformation of KdV hierarchies and their infinitely many conservation laws, J. Phys. A, 26, 1993, 2389-2407. 被引量:1
  • 4Wu, Z. Y., Zhang, D. H. and Zheng, Q. R., Quantum deformation of KdV hierarchies and their exact solutions: q-deformed solitons, J. Phys. A, 27, 1994, 5307-5312. 被引量:1
  • 5Mas, J. and Seco, M., The algebra of q-pseudodifferential symbols and the q-W(np) algebra, J. Math. Phys., 37, 1996, 6510-6529. 被引量:1
  • 6Frenkel, E. and Reshetikhin, N., Quantum affine algebras and deformations of the Virasoro and W-algebras, Comm. Math. Phys., 178, 1996, 237-264. 被引量:1
  • 7Frenkel, E., Deformations of the KdV hierarchy and related soliton equations, Int. Math. Res. Not., 2, 1996, 55-76. 被引量:1
  • 8Khesin, B., Lyubashenko, V. and Roger, C., Extensions and contractions of the Lie algebra of qpseudodifferential symbols on the circle, J. Funct. Anal., 143, 1997, 55-97. 被引量:1
  • 9Haine, L. and Iliev, P., The bispectral property of a q-deformation of the Schur polynomials and the q-KdV hierarchy, J. Phys. A, 30, 1997, 7217-7227. 被引量:1
  • 10Iliev, P., Solutions to Frenkel's deformation of the KP hierarchy, d. Phys. A, 31, 1998, 241-244. 被引量:1

共引文献1

同被引文献6

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部