期刊文献+

改进的SIFT算法在图像特征点匹配中的应用 被引量:14

Application of Improved SIFT Algorithm in Image Feature Point Matching
下载PDF
导出
摘要 为了提高图像拼接过程中常用的SIFT(尺度不变特征)算法的特征点匹配准确率,减少误匹配特征点的数量,为后续的图像拼接提供准确的依据,通过将SIFT算法和RANSAC(随机抽样一致性)算法相结合,提出了一种提高SIFT算法匹配准确率的算法。在利用SIFT算法对目标图像进行特征提取以及特征点匹配后,再由RANSAC算法利用迭代方式估算出一个合理的数据模型,剔除掉不符合该模型的错误匹配点。最后利用该算法得到的匹配特征点进行图像拼接,拼接后的结果表明该算法准确、有效。 In order to improve the accuracy of feature point matching of SIFT(Scale Invariant Feature Transform) algorithm in the process of image mosaicking,reduce the number of mismatched feature points and provide accurate evidence for subsequent image mosaicking,an algorithm for improving the matching accuracy of SIFT algorithm was proposed by combining the SIFT algorithm with the RANSAC(Random Sample Consensus) algorithm. After the SIFT algorithm is used to extract the target image and match the feature points,a reasonable data model is estimated by iterative method with RANSAC algorithm;and then the error matching points that do not conform to the model are eliminated; and finally the matching feature points obtained by the algorithm are used for image mosaicking. The result shows that the algorithm is practicable and effective.
作者 完文韬 杨成禹 WAN Wentao, YANG Chengyu(School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 13002)
出处 《长春理工大学学报(自然科学版)》 2018年第1期44-47,52,共5页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 图像拼接 特征点匹配 SIFT算法 RANSAC算法 image mosaicking feature point matching SIFT algorithm RANSAC algorithm
  • 相关文献

参考文献8

二级参考文献91

  • 1李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:153
  • 2Mlkolajczyx K, Schmid C. A performance evaluation of local description [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005, 27 (10) : 1615-1630. 被引量:1
  • 3Lowe D G. Object recognition from local scale-invariant features [ C]// Proceedings of International Conference on Computer Vision (ICCV 1999). Kerkyra, Greece, 1999, 9 (2): 1150- 1157. 被引量:1
  • 4Lowe D G . Distinctive image features from scale-invariant keypoints[ J]. International Journal of Computer Vision, 2004, 60 (2) :91-110. 被引量:1
  • 5Fishier M A, Bolles R C. Random Sample Consensus: A Paradigm for Model Fitting with Application to Image Analysis and Automated Cartorgraphy [ J ]. Communication Association Machine, 1981, 24 (6) :381- 395. 被引量:1
  • 6Lindeberg T. Scale2space theory: A basic tool for analyzing structures at different scale[ J]. Journal Applied Statistics, 1994, 21 (2) :223-261. 被引量:1
  • 7BrownL G.A survey of image registration techniques [J]. ACM Computing Surveys : S0360-0300,1992,24(4):326-376. 被引量:1
  • 8Zitova B, Flusser J.Image registration methods: asurvey [J]. Image and Vision Computing S0262-8856,2003,21 (11): 977-1000. 被引量:1
  • 9Harris C G, Stephens M J. A combined comer and edge detector [C]// Proceedings Fourth Alvey Vision Conference, Manchester, 1988. 被引量:1
  • 10ZHOU Wei, GUAN Jian. Change detection of concealed targets using repeat-pass SAR images[EB/OL]. [2008-01- 04].http://ieexplore.ieee.org/xp//freeabsall.jsp? arnumber : 4418607. 被引量:1

共引文献155

同被引文献109

引证文献14

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部