期刊文献+

融合社交信息的矩阵分解推荐方法研究综述 被引量:59

Survey of Matrix Factorization Based Recommendation Methods by Integrating Social Information
下载PDF
导出
摘要 随着社交网络的发展,融合社交信息的推荐成为推荐领域中的一个研究热点.基于矩阵分解的协同过滤推荐方法(简称矩阵分解推荐方法)因其算法可扩展性好及灵活性高等诸多特点,成为研究人员在其基础之上进行社交推荐模型构建的重要原因.围绕基于矩阵分解的社交推荐模型,依据模型的构建方式对社交推荐模型进行综述.在实际数据上,对已有代表性社交推荐方法进行对比,分析各种典型社交推荐模型在不同视角下的性能(如整体用户、冷启动用户、长尾物品).最后,分析了基于矩阵分解的社交推荐模型及其求解算法存在的问题,并对未来研究方向与发展趋势进行展望. With the increasing of social network, social recommendation becomes hot research topic in recommendation systems. Matrix factorization based(MF-based) recommendation model gradually becomes the key component of social recommendation due to its high expansibility and flexibility. Thus, this paper focuses on MF-based social recommendation methods. Firstly, it reviews the existing social recommendation models according to the model construction strategies. Next, it conducts a series of experiments on real-world datasets to demonstrate the performance of different social recommendation methods from three perspectives including whole-users, cold start-users, and long-tail items. Finally, the paper analyzes the problems of MF-based social recommendation model, and discusses the possible future research directions and development trends in this research area.
出处 《软件学报》 EI CSCD 北大核心 2018年第2期340-362,共23页 Journal of Software
基金 国家自然科学基金(61370129 61375062 61632004)~~
关键词 推荐系统 矩阵分解 社交推荐 社交网络 协同过滤 recommendation system matrix factorization social recommendation social network collaborative filtering
  • 相关文献

参考文献4

二级参考文献139

共引文献624

同被引文献276

引证文献59

二级引证文献251

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部