期刊文献+

电子商务中的个性化推荐方法评述 被引量:52

A Review of E-Business Recommendation System
下载PDF
导出
摘要 随着电子商务的不断发展,如何更好地了解用户需求以提供更令人满意的个性化服务变成了一个十分关键的问题,也就是电子商务推荐系统产生的动因。文章首先介绍了电子商务个性化推荐系统的概念和作用,然后对当前最主要推荐策略的原理、应用进行了描述,随后对这些推荐策略的优劣势进行了深入的分析、评价。接着评述了推荐算法评价的相关难题和研究,再就是对电子商务推荐系统的相关因子研究进行了介绍。在最后部分,文章对将来个性化推荐的研究方向进行了探讨,希望通过这样的探索能进一步推动个性化推荐的相关研究。 With the development of e - business, how to provide the user with more satisfied personalized service according to their real requirements is a key problem. The recommendation system is put forward to solve such kind of problems. In this paper, the basic concepts of personalized recommendation system are introduced, and the principles and appiieation of recommendation strategy are described also. The strength and weakness of each strategy are compared and evaluated. We also reviewed the related hard topic of the evaluation, and studied the evaluation factors of recommendation system in this paper. At last, the future research areas are also explored, and we hope it can help to impel the related study of e - business recommendation system.
作者 朱岩 林泽楠
出处 《中国软科学》 CSSCI 北大核心 2009年第2期183-192,共10页 China Soft Science
基金 国家自然科学基金资助项目(70621061 70872059 70890082)
关键词 电子商务 推荐系统 协同过滤 内容过滤 组合推荐 e - business recommendation system collaborative filtering content - based filtering hybrid recom - mendation
  • 相关文献

参考文献31

  • 1Abbattista F. , Degemmis M. , Fanizzi N. , et al. Learn ing User Profiles for Content - Based Filtering in e - Commerce [R]. SSRN. 被引量:1
  • 2Balabanovic M. and Shoham Y. , Fab: Content - Based Collaborative Recommendation. Communication of the ACM [J]. 1997,40(3):66 -72. 被引量:1
  • 3Bo Xiao. Izak Benbasat. E -Commerce Product Recommendation Agents: Use, Characteristics, and Impact[J]. MIS Quarterly, 2007,31 ( 1 ) :137 -209. 被引量:1
  • 4Breese, J. S. , Heckerman, D. , & Kadie, C. Empirical Analysis of Predictive Algorithms for Collaborative Filtering [ C]. Proceedings of the 14th Conference on Uncertainly in Artificial Intelligence, 1998. 43 C52. 被引量:1
  • 5Byron L.D. Bezerra, Francisco de A.T. de Carvalho. A Symbolic Approach for Content - based Information Filtering [ J ]. Information Processing Letters,2004, (92) :45 - 52. 被引量:1
  • 6CHEN Jian, YIN Jian, HUANG Jin. Automatic Content - Based Recommendation in e -Commerce [ C ]. 2005 Ieee International Conference on e - Technology, e - Commerce and e - Service ( EEE' 05 ) ,2005. 748 - 753. 被引量:1
  • 7D. Billsus and M. J. Pazzani. Learning Collaborative Information Filters. Proceedings of the Fifteenth International Conference on Machine Learning[ C]. Madison, WI, 1998. Morgan Kaufman. 被引量:1
  • 8Dan Ariely. John G. Lynch, Jr. Manuel Aparicio IV. Learning by Collaborative and Individual- Based Recommendation Agents [ R ]. SSRN, 2007. 被引量:1
  • 9Daniel Fleder. Kartik Hosanagar. Blockbuster Culture' s Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity[ R]. SSRN, JUNE, 2007. 被引量:1
  • 10Diehl, K., Kornish, L. J., and Lynch, J. G. Smart Agents: When Lower Search Costs for Quality Information Increase Price Sensitivity [ J]. Journal of Consumer Research,2003,30( 1 ) :56 -71. 被引量:1

同被引文献670

引证文献52

二级引证文献277

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部