期刊文献+

基于样本空间分解的kNN分类器设计原理 被引量:1

kNN classifier design theory research based on sample space decomposition
下载PDF
导出
摘要 针对k NN分类器在海量数据集中搜索k近邻计算复杂、耗时长、存储空间大等缺点,提出以单元属性赋值为基础的分类器设计原理和实施方案.分类器将待分类点映射到其所在单元,对待识别单元内的点在其相应窗口内生成k近邻集,并按kNN准则做出类属决策或拒绝决策.对某类样本占明显优势属性单元内的点直接按该类做出类属决策;对具有与给定样本集弱关联以及任一类样本不占优势属性单元内的点和待识型单元内可拒绝决策点给出相应处理办法.同时,对提高分类速度和精度,解决单元分割问题,选定有关参数,估计错分率等进行讨论并提出相应对策.通过仿真实验,与kNN分类器对比分析,进一步证明本文方法的有效性. Focusing on k nearest neighbor classifier with drawbacks of complex calculations, time consumption and large storage space of, a criterion for unacceptable decision point and unit properties of sample space is described and a k NN classifier based on unit properties assignment is proposed. Firstly, test sample is mapped into its unit by the classifier proposed and calculate its k nearest neighbor set. Secondly, decision result of the test sample is obtained by k NN method. In the unit as proposed, if there are most samples which belong to the same class, the test sample will be set as the same class; else, it will be rejected. Lastly, the method on improving speed, accuracy of k NN classifier and how to select parameter are discussed. By a simulation case in semiconductor batch process, the effectiveness of the method proposed is demonstrated.
出处 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2017年第11期1218-1223,共6页 Journal of Liaoning Technical University (Natural Science)
基金 国家自然科学基金(61673279) 辽宁省教育厅基金(L2015432) 辽宁省自然科学基金(2015020164)
关键词 数据挖掘 KNN分类器 大数据 样本空间分解 模式识别 data mining k nearest neighbor classifier big data sample space decomposition pattern recognition
  • 相关文献

参考文献4

二级参考文献66

  • 1王维彬,钟润添.一种基于贪心EM算法学习GMM的聚类算法[J].计算机仿真,2007,24(2):65-68. 被引量:15
  • 2魏孝章,豆增发.一种基于信息增益的K-NN改进算法[J].计算机工程与应用,2007,43(19):188-191. 被引量:9
  • 3Wu Xindong,Kumar V,Quinlan J R,et al.Top 10 algorithms in data mining[J].Knowledge and Information Systems,2008,14(1 ): 1-37. 被引量:1
  • 4COVER T M,HART P E. Nearest neighbor pattern classification [J]. In Trans IEEE Inform Theory, 1967,IT- 13:21 - 27.?A 被引量:1
  • 5CHO T H,CONNERS R W,ARAMAN P A. A comparison of rule-based, K-nearest neighbor, and neural net classifiers for automation [ C ]. Proceedings, Developing and Managing Expert System Programs, 1991, 202 - 209.?A 被引量:1
  • 6DUDANI S A. The distance-weighted k-nearest-neighbor rule [J]. IEEE Trans Syst Man Cyber, 1976, 6:325-327.?A 被引量:1
  • 7VAPNIK V N. The nature of statistical learningtheory[M].NewYork:Springer-Verlag,1995.张学工,译.统计学习理论的本质[M].北京:清华大学出版社,1999.?A 被引量:1
  • 8BURGES J C. A tutorial on support vector machines for pattern recognition [ M ]. Bell Laboratories, Lucent Technologies, Boston, 1997.?A 被引量:1
  • 9KEERTHI S S, SHEVADE S K, BHATTACHARYYA C, et al. Improvements to Platt's SMO algorithm for SVM classifier design[J]. Neural Computation,2001,13(3):637 - 649.?A 被引量:1
  • 10LIN C J. A formal analysis of stopping criteria of decomposition methods for support vector machines[J]. IEEE Transaction on Neural Networks 2002, 13 (5): 1045 - 1052.?A 被引量:1

共引文献94

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部