期刊文献+

P2P安全重叠网络模型研究 被引量:1

Research on P2P security overlay network model
下载PDF
导出
摘要 针对P2P软件开发中的安全性问题及信任机制使用等问题,提出了一种P2P安全重叠网络数学模型。作为模型的核心部分,重叠网络被划分为4层:数据确认层、数据采集层、信任评估层和路由层。数据确认层执行对不可信数据的过滤,数据采集层对逻辑节点之间的交互数据进行向量化并进行相关的统计和分析,信任评估层通过判断某个逻辑节点是否可信来实现模型的信任机制,路由层在信任评估结果的基础上识别出恶意节点并完成逻辑节点到对应的物理节点的映射功能。在模型实现阶段,为提高P2P软件的安全性以及信任机制使用的便利性,采用简单向量距离分类法和Kademlia算法对全局信任模型进行了改进。仿真结果和实际使用情况表明,基于该模型开发的P2P软件具有较高的安全性。 To improve the security of software developing and the use of trust mechanism in P2P, a mathematical model of P2P security overlay network was proposed. As the core of the model, overlay network was divided into four parts, ineluding data confirmation layer, data capture layer, trust mechanism layer and routing layer. In the matter of functions, data confirmation layer filtered untrustworthy data; data capture layer run the vectorization of the exchanging data between logic nodes and processed relevant statistics and analysis; trust mechanism layer realized trust mechanism via identifying whether a logic node was trustworthy or not; routing layer build up mapping relationship on logic nodes and physical nodes. To enhance the security of P2P software and the convenience in the use of trust mechanism, simple vector distance classifications and kademlia algorithm were adopted on the basis of the global trust model. Simulating results show that P2P software developing can be more safe and easier under this model.
出处 《通信学报》 EI CSCD 北大核心 2009年第5期99-104,共6页 Journal on Communications
基金 国家自然科学基金资助项目(60873231 60572131) 科技型中小企业创新基金资助项目(08C26213200495) 江苏省科技攻关基金资助项目(BE2007058) 江苏省高校自然科学基础研究基金资助项目(08KJB520005)~~
关键词 重叠网络 安全 对等网络 overlay network security P2P
  • 相关文献

参考文献14

  • 1ZHANG Q, SUN Y, LIU Z, et al. Design of a distributed P2P-based grid content management architecture[A]. Proc of the 3rd Communication Networks and Services Research Conf[C]. New York: IEEE Press, 2005.339-344. 被引量:1
  • 2KHAMBATTI M, DASGUPTA P, RYU K D. A role-based trust model for Peer-to-Peer communities and dynamic coalitions[A]. Proc of the 2nd IEEE Int'l Information Assurance Workshop[C]. New York: IEEE Press, 2004. 141-154. 被引量:1
  • 3WANG Y, VASSILEVA J. Bayesian network trust model in peer-to-peer networks[A]. Proc of the 2nd Int'l Workshop on Agents and Peer-to-Peer Computing[C]. Berlin, 2004. 23-34. 被引量:1
  • 4张骞,张霞,文学志,刘积仁,Ting Shan.Peer-to-Peer环境下多粒度Trust模型构造[J].软件学报,2006,17(1):96-107. 被引量:71
  • 5STOICA I, MORRIS R, KARGER D, et al. Chord: a scalable peer-to-peer lookup service for Intemet applications[J]. Proc of the ACM SIGCOMM[C]. San Diego, 2001. 149-160. 被引量:1
  • 6MAYMOUNKOV P,MAZIERES D.Kademlia:a peer-to-peer information system based on the XOR metric[A].IPTPS 2002[C].2002.53-65. 被引量:1
  • 7ROWSTRON A, DRUSCHEL E Pastry: scalable, distributed object location and routing for large-scale peer-to-peer systems[A]. Proc of the Middleware 2001[C]. 2001. 329-350. 被引量:1
  • 8RATNASAMY S, FRANCIS P, HANDLEY M, et al. A scalable content-addressable network[A]. Proc ofACM SIGCOMM[C]. 2001. 被引量:1
  • 9窦文,王怀民,贾焰,邹鹏.构造基于推荐的Peer-to-Peer环境下的Trust模型[J].软件学报,2004,15(4):571-583. 被引量:325
  • 10KAMVAR S D, SCHLOSSER M T, EigenRep: reputation management in P2P networks[A]. Proc of the 12th Int'l World Wide Web Conf[C]. 123-134. 被引量:1

二级参考文献18

  • 1黄萱青 吴立德.独立于语种的文本分类方法[M].,2000.37-43. 被引量:1
  • 2鲁松 白硕 等.文本中词语权重计算方法的改进[M].,2000.31-36. 被引量:1
  • 3卜东波.聚类/分类理论研究及其在大模型文本挖掘的应用:博士论文[M].,2000.. 被引量:1
  • 4COVER T M,HART P E. Nearest neighbor pattern classification [J]. In Trans IEEE Inform Theory, 1967,IT- 13:21 - 27.?A 被引量:1
  • 5CHO T H,CONNERS R W,ARAMAN P A. A comparison of rule-based, K-nearest neighbor, and neural net classifiers for automation [ C ]. Proceedings, Developing and Managing Expert System Programs, 1991, 202 - 209.?A 被引量:1
  • 6DUDANI S A. The distance-weighted k-nearest-neighbor rule [J]. IEEE Trans Syst Man Cyber, 1976, 6:325-327.?A 被引量:1
  • 7VAPNIK V N. The nature of statistical learningtheory[M].NewYork:Springer-Verlag,1995.张学工,译.统计学习理论的本质[M].北京:清华大学出版社,1999.?A 被引量:1
  • 8BURGES J C. A tutorial on support vector machines for pattern recognition [ M ]. Bell Laboratories, Lucent Technologies, Boston, 1997.?A 被引量:1
  • 9KEERTHI S S, SHEVADE S K, BHATTACHARYYA C, et al. Improvements to Platt's SMO algorithm for SVM classifier design[J]. Neural Computation,2001,13(3):637 - 649.?A 被引量:1
  • 10LIN C J. A formal analysis of stopping criteria of decomposition methods for support vector machines[J]. IEEE Transaction on Neural Networks 2002, 13 (5): 1045 - 1052.?A 被引量:1

共引文献709

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部