摘要
共振解调法的难点在于带通滤波器的确定,谱峭度可根据信号特征寻找最优滤波器参数,很好地解决以上问题。然而谱峭度在对低信噪比数据进行处理时,滤波后的信号往往残留较大带内噪声,极大地影响了后续故障诊断的准确性。针对该问题,提出利用Teager能量算子追踪SK滤波信号的系统总能量,从信号能量的角度消除带内噪声,二次增强隐藏于噪声中的故障冲击特征,最后通过包络谱分析获得诊断结果。应用轴承故障仿真数据、实验室内圈和外圈故障数据验证了本方法的有效性。
The difficulty of resonance demodulation method is to determine the parameters of band-pass filters.Spectral kurtosis(SK) can resolve this conundrum by searching for the optimal parameters of the band-pass filters according to the characteristics of signals.However,in the case of strong background noise,SK is inadequate to extract local fault induced cyclic impact from bearing vibration signals due to the in-band noise.Aimed at this issue,a novel fault diagnosis method for rolling bearings is proposed based on spectral kurtosis and Teager energy operator.The Teager energy operator is employed to calculate the energy of signals after the SK,which can suppress the in-band noises and further enhance the cyclic impact feature hidden in vibrations of faulty bearings after filtering.The frequency spectrum of the signal energy is then given to determine the health condition of bearings.The effectiveness of the method is examined by using both simulative and experimental data.
出处
《噪声与振动控制》
CSCD
2018年第1期182-187,共6页
Noise and Vibration Control
基金
国家自然科学基金资助项目(51265010
51665013)
江西省青年科学基金资助项目(20161BAB216134)
江西省教育厅科技资助项目(GJJ160472)
关键词
振动与波
共振解调
谱峭度
带内噪声
TEAGER能量算子
故障诊断
vibration and wave
resonance demodulation
spectral kurtosis
in-band noise
Teager energy operator
fault diagnosis