期刊文献+

基于分类的多属性实体推荐 被引量:1

Multiple-attribute Entity Recommendation Based on Classification
下载PDF
导出
摘要 在面向实体推荐的探究过程中,包含多样属性的实体获得了越来越多的关注。然而,在面对这种复杂实体对象的推荐过程中,当前的研究工作者大多选用其中一种属性,利用相关算法得以实现。在基于分类处理的方法,对推荐实体的属性进行了深入探究,将物品属性网络划分为多个子信息网络。在子信息网络中,以属性数目为界,将子网络中的多属性以及单属性转化为实体相似度的多样途径,结合实体相似度以及相关算法,得出推荐结果。最后通过实验验证本文的算法,引用多样属性不仅体现了推荐多样性,还提高了推荐精度。 In the process of exploring entity recommendation, the entity containing diverse attributes has gained more and more attention. Most of the current researchers mainly select one attribute, and embody it in the related algorithms and their extensions even though the entity is combined with multiple attributes in entity recommendation. In this paper, on the basis of the classification method, we delve into physical properties of the recommended entities, divide entity's attribute information network into multiple sub ones. In sub information network, bounded by the amount of attributes, the single attribute and even multiple attributes can be diverted into diverse paths of entity similarity, combining with entity similarity and related algorithm, where we can get the recommended results. This study not only refers to various attributes, but also improves the precision of recommendation.
出处 《系统仿真学报》 CAS CSCD 北大核心 2018年第2期405-413,共9页 Journal of System Simulation
基金 国家科技支撑计划(2014BAK15B01)
关键词 实体推荐 多样属性 分类 相似度途径 entity recommendation multiple attribution classification similarity path
  • 相关文献

参考文献6

二级参考文献73

  • 1庞秀丽,冯玉强,姜维.电子商务个性化文档推荐技术研究[J].中国管理科学,2008,16(S1):581-586. 被引量:10
  • 2罗奇,余英,赵呈领,曹艳.自适应推荐算法在电子超市个性化服务系统中的应用研究[J].通信学报,2006,27(11):183-186. 被引量:12
  • 3吴颜,沈洁,顾天竺,陈晓红,李慧,张舒.协同过滤推荐系统中数据稀疏问题的解决[J].计算机应用研究,2007,24(6):94-97. 被引量:51
  • 4Shardanand U,Maes P.Social information filtering:algorithms for automating "word of mouth"[C]//Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems.New York:ACM Press,1995,210-217. 被引量:1
  • 5Herlocker J,Konstan J A,Terveen L,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53. 被引量:1
  • 6Geyer-Schulz A,Hahsler M,Wien W,et al.Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory[DB/OL].[2008-10-12].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.911. 被引量:1
  • 7Dahlen B J,Konstan J A,Herlocker J L,et al.Jumpstarting movielens:user benefits of starting a collaborative filtering system with "dead data"[DB/OL].[2008-10-12].http://www.bibsonomy.org/bibtex/24433e6aa3be2cdad117bfb5fd7a757a1/bsmyth. 被引量:1
  • 8Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[DB/OL].[2008-10-12].http://www.cs.pitt.edu/-mrotaru/comp/rs/Breese%20UAI%201998.pdf. 被引量:1
  • 9Herlocker J L,Konstan J A,Borchers A,et al.An algorithmic framework for performing collaborative filtering[C]// Hearst M A,Gey F F,Tong R.Proceedings of the 22nd International Conference on Research and Development in Information Retrieval (SIGIR'99) (Aug).New York:ACM Press,1999:230-237. 被引量:1
  • 10Billsus D,Pazzani M J.Learning collaborative information filters[C]// Rich C,Mostow J.Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-1998).Menlo Park,Calif:AAAI Press,1998:46-53. 被引量:1

共引文献460

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部