期刊文献+

一种新的基于社交关系的相似度传播式推荐算法 被引量:4

New Recommendation Algorithm of Similarity Propagation Based on Social Relation
下载PDF
导出
摘要 传统协同过滤中用户相似性计算方法在数据稠密的情况下能得到比较可靠的结果.然而当数据稀疏时,相似度计算方法会受到数据稀疏性影响,使其计算结果不准确,特别是在冷启动用户中,相似度计算结果不可靠.为了解决以上问题,从用户社交关系的角度,提出一种新的基于社交关系的相似度传播式协同过滤推荐算法.首先对用户社交关系进行建模,量化用户之间社交关系;然后计算活跃用户之间的相似性得到可靠相似度;最后基于社交关系的可靠相似度传播来构建推荐方法.实验证明,提出的算法可以大幅度提高推荐精度,改善对冷启动用户的推荐. In traditional collaborative filtering, user similarity calculation methods can get more reliable results when data is dense. While data is sparse, however,the similarity calculation methods are affected by the sparseness of data,which makes the results of these methods not accurate, especially in cold start users, the results of similarity calculation are not reliable. To solve above problems, a new collaborative filtering recommendation algorithm of similarity propagation based on social relation was proposed from the perspective of user social relation. Firstly, user social relation is modeled and social relationships between users are quantitated;then, the proposed algorithm calculates the similarity between active users and gets reliable similarity; finally, the recommendation method is built based on the reliable similarity propagation of social relation. Experiments show that the proposed algorithm can improve the accuracy of recommendation and the recommendation for cold users in a large scale.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第5期1073-1077,共5页 Journal of Chinese Computer Systems
基金 教育部规划基金项目(11YJA860028)资助 福建省自然科学基金项目(2013J01219)资助
关键词 社交关系 活跃用户 可靠相似度 相似度传播 协同过滤推荐 social relation active user reliable similarity similarity propagation collaborative filtering recommendation
  • 相关文献

参考文献14

  • 1Yu Le, Pan Rong, Li Zhang-feng. Adaptive social similarities for recommender systems[C]. Proceedings of the Fifth ACM Confer- ence on Recommender Systems, ACM ,2011:257-260. 被引量:1
  • 2Li Quan-nan, Zheng Yu, Xie Xing, et al. Mining user similarity based on location history [ C ]. Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM,2008 : 34. 被引量:1
  • 3Ying Josh Jia-ching, Lu Eric Hsueh-chan, Lee Wang-chien, et al. Mining user similarity from semantic trajectories [ C ]. Proceedings of the 2nd ACM SIGSPATIAL International Workshop on Location Based Social Networks, ACM ,2010 : 19-26. 被引量:1
  • 4Hyung Jun Ahn. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem[ J]. Information Sci- ences ,2008,178( 1 ) :37-51. 被引量:1
  • 5嵇晓声,刘宴兵,罗来明.协同过滤中基于用户兴趣度的相似性度量方法[J].计算机应用,2010,30(10):2618-2620. 被引量:27
  • 6赵琴琴,鲁凯,王斌.SPCF:一种基于内存的传播式协同过滤推荐算法[J].计算机学报,2013,36(3):671-676. 被引量:49
  • 7胡福华,郑小林,干红华.基于相似度传递的协同过滤算法[J].计算机工程,2011,37(10):50-51. 被引量:11
  • 8Ma Hao, Yang Hai-xuan,Michenael R Lyu, et al. Sorec: social rec- ommendation using probabilistic matrix factorization [ C ]. Proceed- ings of the 17th ACM Conference on Information and Knowledge Management, ACM, 2008:931-940. 被引量:1
  • 9Ma Hao, Zhou Deng-yong, Liu Chao, et al. Recommender systems with social regularization [ C ]. Proceedings of die Fourth ACM In- ternational Conference on Web Search and Data Mining. ACM, 2011:287-296. 被引量:1
  • 10Yang Xi-wang, Harald Steck, Liu Yong. Circle-based recommenda- tion in online social networks [ C ]. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM ,2012 : 1267-1275. 被引量:1

二级参考文献37

  • 1贾丽会,张修如.BP算法分析与改进[J].计算机技术与发展,2006,16(10):101-103. 被引量:48
  • 2陈刚,刘发升.基于BP神经网络的数据挖掘方法[J].计算机与现代化,2006(10):20-22. 被引量:14
  • 3ADOMAVICIUS G, TUZHILIN A. Towards the next generation of recommender systems: A survey of the state-of-the-art and possible extensions[ J]. IEEE Transactions of Knowledge and Data Engineering, 2005, 17(6): 734-749. 被引量:1
  • 4BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[ C]// UAI 98: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan-Kaufmann, 1998:43-52. 被引量:1
  • 5SU XIAOYUAN, KHOSHGOFTAAR T M. A survey of collaborative filtering techniques [ J/OL]. Advances in Artificial Intelligence, 2009, 2009:421425 [ 2010 - 02 - 02]. http://www, hindawi, corn/ journals/aai/2009/421425, html. 被引量:1
  • 6AHN H J. A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem[ J]. Information Sciences: an International Journal, 2008, 178(1): 37-51. 被引量:1
  • 7SHEN LEI, ZHOU Y1MING. A new user similarity measure for collaborative filtering algorithm[ C]// 2010 Second International Con- ference on Computer Modeling and Simulation. Washington, DC: IEEE Computer Society, 2010, 2:375-379. 被引量:1
  • 8CANDILLIER L, MEYER F, FESSANT F. Designing specific weighted similarity measures to improve collaborative filtering systems [ C]// Proceedings of the 8th Industrial Conference on Advances in Data Mining: Medical Applications, E-Commerce, Marketing, and Theoretical Aspects, LNCS 5077. Berlin: Springer-Verlag, 2008: 242 - 255. 被引量:1
  • 9MovieLens data sets [ EB/OL]. (2006 - 10 - 05) [ 2010 -01 - 20]. http://www, grouplens, org/node/73. 被引量:1
  • 10HERLOCKER J L, KONSTAN J A, TERVEEN L G, et al. Evaluating collaborative filtering recommender systems [ J]. ACM Transactions on Information Systems, 2004, 22( 1 ) : 5 - 53. 被引量:1

共引文献95

同被引文献54

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部