期刊文献+

融合信任关系和用户项目二部图的推荐算法 被引量:5

Incorporating social trust relationship and bipartite network for recommendation
下载PDF
导出
摘要 传统冷启动和数据稀疏性问题是推荐系统面临的两大难题。现有的大多数基于矩阵分解的推荐方法将用户孤立对待,忽略了用户之间的信任关系,从而导致推荐性能低效。提出一种融合信任关系和用户项目二部结构的矩阵分解推荐方法。该方法在对评分矩阵进行分解的基础上,加入用户信任关系和用户项目二部图结构信息,采用梯度下降算法训练模型参数。Epinions数据集上的对比实验表明,该方法有效提高了推荐系统的准确性和可靠性,尤其在冷启动和稀疏数据情况下,其推荐精度明显优于传统的推荐方法。 Cold-start and data sparsity issues have still been two challenges in recommender systems. In most of traditional recommender systems based on the matrix factorization model, it is often assumed that users are isolated and the relationships among users are ignored, this results in the decrease in the recommendation effects. Thus, a novel approach incorporating social trust relationship and the structure of bipartite network is proposed. Based on the matrix factorization, this proposed approach combines the social trust relationships among users with the structure of bipartite network, and employs the gradient algorithm to train model parameters. The experimental results on Epinions data set show that the proposed approach is superior to other advanced approaches in accuracy and reliability, especially while the cold-start and data sparsity issues are involved in.
作者 陈平华 杨凯
出处 《计算机工程与应用》 CSCD 北大核心 2018年第4期77-83,共7页 Computer Engineering and Applications
基金 广东省省级科技计划项目(No.2016B030308001 No.2016B030306002) 广州市科技计划项目(No.201604010099)
关键词 协同过滤 信任关系 矩阵分解 二部图 物质扩散 collaborative filtering trust relationship matrix factorization bipartite network mass diffusion
  • 相关文献

参考文献12

二级参考文献232

  • 1SCHAFER J B, KONSTAN J, RIEDL J. Recommender systems in E- commerce [ C ]//Proc of E-COMMERCE. 1999 : 158-166. 被引量:1
  • 2HUANG Zan, ZENG D, CHEN H. A comparison of collaborative-ill- tering recommendation algorithms for E-commerce [ J ]. IEEE Intelli- gent Systems,2007,22 ( 5 ) :68-78. 被引量:1
  • 3ZHOU Tao, REN Jie, MEDO M, et al. Bipartite network projection and personal recommendation [ J ]. Physical Review E, 2007,76 (4) :046115. 被引量:1
  • 4LIU Jian-guo, WANG Bing-hong, GUO Qiang. Improved collabora- tive filtering algorithm via information transformation [ J ]. Internatio- nal Journal of Modern Physics C,2009,20(2) :285-293. 被引量:1
  • 5ZHANG Yi-cheng, BLATYNER M, YU Yi-kuo. Heat conduction process on community networks as a recommendation model [ J ]. Physical Review Letters, 2007,99 ( 15 ) : 154301. 被引量:1
  • 6LIU Jian-guo, ZHOU Tao, CHE Hong-an, et al. Effects of high-order correlations on personalized recommendations for bipartite networks [ J]. Physica A,2010,389:881-886. 被引量:1
  • 7SHANG Ming-sheng, LV Lin-yuan, ZHANG Yi-cheng, et al. Empi- rical analysis of Web-based user-object bipartite networks [ J ]. Euro- physics Letters ,2010,90 (4) :48006. 被引量:1
  • 8HUANG Zan, ZENG D D, CHEN H. Analyzing consumer-product graphs: empirical findings and applications in recommender systems [ J ]. Management Science, 2007, 53 (7) : 1146-1164. 被引量:1
  • 9ZHOU Tao, KUSCSIK Z, LIU Jian-guo, et al. Solving the apparent diversity-accuracy dilemma of recommender systems [ J ]. PNAS, 2010,107(10) :4511-4515. 被引量:1
  • 10ZHOU Tao, SU Ri-qi, LIU Run-ran, JIANG Luo-luo, et al. Accu- rate and diverse recommendations via eliminating redundant correla- tions[ J ]. New Journal of Physics ,2009,11:123008. 被引量:1

共引文献276

同被引文献24

引证文献5

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部