摘要
多维项目反应理论(MIRT)模型是国际教育统计与心理测量学研究的热点模型.在简要介绍一种常见的MIRT模型和数理统计学热门的变量筛选方法的基础上,针对教育统计研究者常用的分数减法测验数据进行测验题目的维度识别.通过分别使用传统的因子分析法、LASSO方法和弹性网方法分析测验数据,获得了测验题目的维度识别结果,并对它们的识别准确率进行比较.研究表明使用变量筛选方法尤其是LASSO方法能够较好地识别该测验的题目维度间隶属关系,为多维测验的维度识别提供可靠的信息.
Multidimensional item response theory (MIRT) has become a hot research issue in the field of psychological and educational assessment. By briefly introducing the popular M2PL model, the methods of LASSO and elastic net, this paper analyzed the real data of the fraction subtraction test introduced within the CDM package in R software. Specifically, this research applied factor analysis, LASSO and elastic net methods to identify dimensions of the real test items. The results showed that variable selection methods especially the LASSO can provide sufficient and reliable information to the dimension identification of the fraction subtraction test.
作者
孙佳楠
杨武岳
陈秋
SUN Jia-nan;YANG Wu-yue;CHEN Qiu(School of Science, Beijing Forestry University, Beijing 100083, China)
出处
《数学的实践与认识》
北大核心
2017年第21期291-296,共6页
Mathematics in Practice and Theory
基金
中央高校基本科研业务费专项资金(2015ZCQ-LY-01)
国家自然科学基金青年科学基金项目(11701029)
国家自然科学基金数学天元基金(11626040)