期刊文献+

基于治疗前MR-DWI影像组学预测肺癌化疗疗效的初步研究 被引量:13

DWI-based radiomics for predicting response of lung cancer to chemotherapy:apilot study
下载PDF
导出
摘要 目的:探讨基于磁共振扩散加权成像(DWI)的影像组学对肺癌化疗疗效的预测价值。方法:回顾性搜集连续30例经病理证实的肺癌患者的病例资料,根据第二周期化疗后肿瘤最大径退缩率、按RECIST标准将患者分为治疗有效组(16例)和无效组(14例)。提取所有患者的化疗前ADC图像(b=600、800和1000s/mm2),应用影像组学方法,在每种b值的ADC图像上提取病灶的19985个特征,采用Lasso进行降维和建模。采用受试者工作特征曲线(ROC)计算三种b值模型预测化疗疗效的诊断效能,并采用DeLong检验比较三种曲线的曲线下面积(AUC)。结果:30例中有效组16例、无效组14例。基于b=600s/mm2的ADC图像的影像组学特征所建立的模型,其AUC、诊断敏感度和特异性分别为0.875、0.895和0.750;基于b=800s/mm2的ADC图像,其相应的AUC、诊断敏感度和特异度分别为0.924、0.947和0.938,基于b=1000s/mm2的ADC图像,相应的AUC、诊断敏感度和特异度分别为0.918、0.895和0.875。三种b值的AUC差异无统计学意义(P>0.05)。结论:基于MR-DWI的影像组学可在治疗前对肺癌化疗疗效作出准确预测。 Objective:To investigate the value of radiomics for DWI in prediction of treatment response of lung cancer to chemotherapy. Methods:Thirty patients with lung cancer confirmed by pathology were enrolled retrospectively. According to the RECIST,all patients were divided into good response group (GR) and poor response group (PR) based on tumor maximum diameter shrinkage rate after the second cycle of chemotherapy. ADC imaging (b = 600,800 and 1000s/mm2) were collected,and radiomics features were further extracted and analyzed. In total, 19985 radiomics features were extracted in the ADC imaging for each patient, respectively. The absolute shrinkage and selection operator (Lasso) was adopted in feature selection and used in the process of building the classifier model. Receiver operating characteristic (ROC) curve was used to evaluate the capability of the three model to predict GR. Results: The AUC, sensitivity and specificity of the ra- diomies model based on the ADC imaging (b= 600s/mm2) for GR prediction were 0. 875,0. 895 and 0. 750. The AUC,sen- sitivity and specificity of the radiomics model based on the ADC imaging (b: 800s/mm2) for GR prediction were 0. 924, 0. 947 and 0. 938. The AUC, sensitivity and specificity of the radiomics model based on the ADC imaging (b= 1000s/mm2) for GR prediction were 0. 918,0. 895 and 0. 875. The AUCs among the three groups had no difference (P〈0. 05). Conclu- sion:It is possible to predict response of lung cancer to chemotherapy based on the radiomics of pretreatment DWI.
出处 《放射学实践》 北大核心 2017年第12期1221-1224,共4页 Radiologic Practice
基金 云南省应用基础研究(昆医联合专项2017FE467-084)
关键词 肺肿瘤 扩散加权成像 磁共振成像 影像组学 化学治疗 Lung neoplasms Diffusion weighted imaging Magnetic resonance imaging Radiomics Chemotherapy
  • 相关文献

参考文献6

二级参考文献62

  • 1Ah-See ML, Makris A, Taylor NJ, et al. Early changes in func- tional dynamic magnetic resonance imaging predict for pathologic response to neoadjuvant chemotherapy in primary breast cancer[J]. Clin Cancer Res,2008,14(20) :6580-6589. 被引量:1
  • 2Padhanni AR, Hayes C, Assersohn L, et al. Prediction of clinico pathologic response of breast cancer to primary chemotherapy at contrast enhanced MR imaging :initial clinical results[J]. Radiio logy,2006,239(9) :361- 368. 被引量:1
  • 3Zhao B, Schwartz LH, Larson SM. Imaging surrogates of tumor response to therapy: anatomic and functional biomarkers[J]. Nucl Med,2009,50(5) :239 -249. 被引量:1
  • 4Sharma U,Danishad KK,Seenu V,et al. Longitudinal study of the assessment by MRI and diffusion weighted imaging of tumor re sponse in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy[J]. NMR Biomed, 2009,22 ( 1 ) : 104- 113. 被引量:1
  • 5Pickles MD, Gibbs P, Lowry M, et al. Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer[J]. Magn Reson Imaging,2006,24(7) :843 -847. 被引量:1
  • 6Huang EH, Strom EA, Perkins GH, et al. Comparison of risk of local regional recurrence after mastectomy or breast conservation therapy for patients treated with neoadjuvant chemotherapy and radiation stratified according to a prognostic index score[J]. Int J Radiat Oncol Biol Phys, 2006,66(2) : 352 -357. 被引量:1
  • 7Yabuuchi H, Hatakenaka M, Takayama K, el al. Non small cell lung cancer: detection of early response to chemotherapy by using contrast-enhanced dynamic and diffusion weighted MR imaging [J]. Radiology, 2011,261(1) : 345-354. 被引量:1
  • 8Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun, 2014, 5:4006. 被引量:1
  • 9Egelmeer AG,Velazquez ER,de Jong JM, et al. Development and validation of a nomogram for prediction of survival and local control in laryngeal carcinoma patients treated with radiotherapy alone: a cohort study based on 994 patients [J]. Radiother Oncol, 2011, 100 ( 1 ) :108-115. 被引量:1
  • 10Valentini V, Lambin P, Myerson RJ. Is it time for tailored treatment of rectal cancer? From prescribing by consensus to prescribing by numbers[ J]. Radiother Oncol, 2012, 102 ( 1 ) : 1- 3. 被引量:1

共引文献153

同被引文献101

引证文献13

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部