期刊文献+

基于LAD-LASSO方法的逐段常数序列中的变点估计 被引量:3

Estimation of Change Points in Piecewise Constant Time Series Based on LAD-LASSO Variable Selection Method
下载PDF
导出
摘要 结构突变(变点)问题是统计学、经济学和信号处理等领域中的热点问题之一。当误差分布服从重尾分布或数据集含异常值时,LAD估计比OLS估计更加稳健;LASSO是一种流行的压缩估计和变量选择方法,将这两种经典的方法结合起来,提出基于LAD-LASSO的逐段常数时间序列变点估计的一种新的研究方法,其基本思想是把变点估计问题转化成变量选择问题来处理,在转化过程中对相应优化问题的约束条件仅做一次松弛。随机模拟表明:所提出的估计方法是切实可行的,算法更加简单易行,且估计结果具有很好的稳健性。 Structural break (change point) problem is one of the hot issues in statistics ,economics and signal processing fields and so on .Least absolute deviation (LAD) estimator is more robust than ordinary least squares (OLS) estimator ,especially when datasets subject to heavy -tailed errors or outliers .Least absolute shrinkage and selection operator (LASSO ) is a popular choice for shrinkage estimation and variable selection .In the paper ,we combine these two classical ideas together to put forward a novel method based on LAD‐LASSO to estimate change points in piecewise constant time series .The basic idea is converting the change point estimation problems into variable selection problems .In converting process we only make one relaxation to the constraint conditions of corresponding optimization problem . Simulation shows that the new method we proposed is really feasible ,algorithm is easier ,and estimators are robust .
作者 李强 王黎明
出处 《统计与信息论坛》 CSSCI 北大核心 2015年第5期16-21,共6页 Journal of Statistics and Information
基金 全国统计科研计划重点项目<基于结构突变理论的通货膨胀持久性研究>(2011LZ035) 山东省自然科学基金项目<基于LASSO与现代非参数方法的变点检测及其应用研究>(ZR2014AL006) 上海财经大学研究生创新基金项目<基于LASSO与现代非参数统计方法的变点检测及其应用研究>(CXJJ-2014-445)
关键词 LAD LASSO变点 稳健性 变量选择 LAD LASSO change point robustness variable selection
  • 相关文献

参考文献15

  • 1Dielman T E. Least Absolute Value Regression: Recent Contributions[J]. Journal of Statistical Computation and Simulation, 2005, 75(4). 被引量:1
  • 2陈希孺.最小一乘线性回归(下)[J].数理统计与管理,1989,8(6):48-56. 被引量:37
  • 3Tibshirani tL Regression Shrinkage and Selection via the Lasso[J]. Journal of the Royal Statistical Society Series B, 1996, 58(1). 被引量:1
  • 4刘明.一类新的多重共线性检验方法[J].统计与信息论坛,2012,27(10):14-16. 被引量:11
  • 5Zou H. The Adaptive Lasso and Its Oracle Properties[J]. Journal of the American Statistical Association, 2006(476). 被引量:1
  • 6Efron B, Hastie T, Johnstone I, et al. Least Angle Regression[J]. The Annals of Statistics, 2004, 32(2). 被引量:1
  • 7Harchaoui Z, Levy-Leduc C. Multiple Change-Poim Estimation with a Total Variation Penalty[J]. Journal of the American Statistical "Association, 2010, 105(492). 被引量:1
  • 8Chan N H, Yau C Y, Zhang R M. Group LAS~9 for Structural Break Time Series[J]. Journal of the American Statistical Association, 2014, 109(506). 被引量:1
  • 9Yao Y, Au S T. Least-Squares Estimation of A Step Function[J]. Sankhya: The Indian Journal of Statistics, Ser. A, 1989, 51(3). 被引量:1
  • 10LavieUe M, IVbulines E. Least-Squares Estimation of an Unknown Number of Shifts in a Time Series[J]. Journal of Time Series Analysis, 2000, 21(1). 被引量:1

二级参考文献5

共引文献58

同被引文献19

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部