摘要
应用基于黎曼解的SPH-ALE方法对两种典型自由面流动问题进行数值模拟,并提出一种一阶核函数修正压力计算方法,通过对临近边界的水粒子压力进行核积分,近似估算固壁边界压力.给出不同时刻的流场压力分布及自由液面演化过程,将计算结果与相关的试验值及数值解进行对比,分析结果表明:SPH-ALE方法较传统SPH方法在流场压力计算精度上有较大的改进,在处理强非线性自由面流动问题时能够达到较高的精度.
We present simulation of two typical free surface flows using Smoothed Particle Hydrodynamics-Arbitrary Lagrangian Eulerian(SPH-ALE) method basd on Rimann-solver.A first order kernel correction pressure integral method is presented,which was used to estimate pressure of boundary by integrating water particles within the kernel radius influence.Distribution of pressure field and evolution of free surface are given,and compared with experimental data and numerical solutions.It shows that SPH-ALE method is more accurate and reliable than traditional SPH in pressure calculation of flow field.It has a higher precision in solving strong nonlinear free surface flows.
出处
《计算物理》
CSCD
北大核心
2017年第6期641-650,共10页
Chinese Journal of Computational Physics
基金
国家自然科学基金(51379051)资助项目