摘要
该文用分离的Delta函数法研究非对称Keyfitz-Kranzer系统中Delta激波的交互性.当初值是三个分段常数状态时,讨论Delta激波和接触间断的交互性,构造性的得到四种不同交互作用下的解.同时,获得当小扰动ε→0时,黎曼解是稳定的.
In this paper, we study the interactions of delta shock waves with contact disconti- nuities for the nonsymmetric Keyfitz-Kranzer system with split delta functions. The solutions are obtained constructively when the initial data are three piecewise constant states. The global structure and large time-asymptotic behaviors of the solutions are analyzed case by case. Moreover, it can be found that the Riemann solutions are stable for such small perturbations with initial data by studying the limits of the solutions when the perturbed parameter ε→0.
作者
李华惠
邵志强
Li Huahui Shao Zhiqiang(College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2017年第4期714-729,共16页
Acta Mathematica Scientia
基金
福建省自然科学基金(2015J01014)~~