期刊文献+

非线性有限元方程组的弧长延拓算法 被引量:2

Arc-Length Continuation Algorithm for Nonlinear Finite Element Equations
下载PDF
导出
摘要 研究工程结构因构件屈曲和材料软化导致的稳定性问题,就需要追踪结构的平衡路径。当采用非线性有限元进行分析时,传统的牛顿迭代法会在极值点和分叉点处失效,而弧长延拓方法能很好地解决这一数值计算难题。针对结构稳定性非线性有限元分析程序的编制,给出弧长延拓算法牛顿迭代的标准格式和两种实用的迭代格式,并讨论它们之间的关系。通过一个边坡稳定性的有限元分析,验证了实用迭代格式的有效性。 Stability analysis of engineering structures requires tracing equilibrium path of the structure when member's buckling or material softening occurs. In nonlinear finite element analysis, the traditional Newton method fails at limit point and bifurcation point. The arc-length continuation method can overcome these numerical difficulties. To develop a nonlinear finite element code for stability analysis, the standard iteration formulation of Newton method is presented for the arc-length continuation method. Two practical formulations of the arc-length continuation method and their relationships with the standard form are also discussed. The applicability of the practical formulation is examined by the finite element analysis of stability for a slope.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第5期793-800,共8页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家科技重大专项(2016ZX05014) 国家自然科学基金(51674010)资助
关键词 弧长延拓算法 平衡路径曲线 非线性分析 牛顿迭代法 有限元方法 arc-length continuation algorithm equilibrium path curve nonlinear analysis Newton iteration method finite element method
  • 相关文献

参考文献9

二级参考文献49

  • 1周凌远,李乔.基于UL法的CR列式三维梁单元计算方法[J].西南交通大学学报,2006,41(6):690-695. 被引量:20
  • 2Crisfield M A. An arc-length method including line searches and accelerations [J]. International Journal for Numerical Methods in Engineering, 1983, 19: 1269-1289. 被引量:1
  • 3Bergan P G, Horrigmoe G, Krakeland B, Soreide T H. Solution techniques for non-linear finite element problems [J]. International Journal for Numerical Methods in Engineering, 1978, 12: 1677-1696. 被引量:1
  • 4Shi J, Crisfield M A. A semi-direct approach for the computation of singular points [J]. Computers & Structures, 1994, 51(1): 107- 115. 被引量:1
  • 5Wriggers P, Wanger W, Miehe C. A quadratically convergent procedure for the calculation of stability points in finite element analysis [J]. Computer Methods in Applied Mechanics and Engineering, 1988, 70: 329-347. 被引量:1
  • 6Wriggers P, Simo J C. A general procedure for the direct computation of turning and bifurcation points [J]. International Journal for Numerical Methods in Engineering, 1990, 30: 155- 176. 被引量:1
  • 7Fujii F, Okazawa S. Pinpointing bifurcation points and branch-switching [J]. Journal of Engineering Mechanics, ASCE, 1997, 123(3): 179-189. 被引量:1
  • 8Yuan Si, Ye Kangsheng, Williams F W, Kennedy D. Reeursive second order convergence method for natural frequencies and modes when using dynamic stiffness matrices [J]. International Journal for Numerical Methods in Engineering, 2003, 56(12): 1795-1814. 被引量:1
  • 9Teh L H, Clarke M J. Tracing secondary equilibrium paths of elastic framed structures [J]. Journal of Engineering Mechanics, 1999, 125(12): 1358-1364. 被引量:1
  • 10Bathe K J. Finite element procedures [M]. Englewood Cliffs, New Jersey: Prentice Hall, 1996. 被引量:1

共引文献56

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部