摘要
为了解决结构非线性有限元分析求解过程中结构失稳或材料出现软化时传统Newton-Raphson法无法通过极值点的问题,在传统弧长法的基础上,提出了求解过极值点问题的改进弧长法.该方法将非线性方程求解过程中出现的不平衡力向量分解为两个相互正交的向量,并建立其弧长的约束方程,求解得到非线性计算中的荷载因子.在求解过程中,给出了改进的确定弧长方法,通过弧长调整避免了求解荷载系数中出现复根的问题.通过两个拱型结构的屈曲分析算例,分别考虑几何非线性和几何材料双重非线性效应,对两个拱形结构进行了非线性屈曲分析,结果表明:结构在出现屈曲时发生急跳现象,验证了改进的弧长法在结构出现材料软化和失稳时能通过极值点.
A modified arc-length method was proposed to solve the problem that the traditional Newton-Raphson method fails in nonlinear finite element analysis on structures with buckling in the structure or softening in the material. The unbalanced load vector in the nonlinear equations is decomposed into two orthogonal vectors. A new constraint equation was derived, and solved to obtain the current load step factor. Complex roots are avoided by modifying the arc length. Two examples of nonlinear analyses on arch structures with geometric and material nonlinearity were presented, respectively. The snap-through in the post-bulking period was also revealed in the examples. The results demonstrate that solutions can be obtained with the proposed method when buckling in the structure or softening in the material occurs.
出处
《西南交通大学学报》
EI
CSCD
北大核心
2011年第6期922-925,共4页
Journal of Southwest Jiaotong University
基金
国家自然科学基金资助项目(50908192)
关键词
有限元
非线性分析
屈曲
极值点
改进弧长法
finite element method
nonlinear analysis
buckling
limited point
improved arc-length method