期刊文献+

基于场一致性的可带铰空间梁元几何非线性分析 被引量:5

GEOMETRIC NONLINEAR ANALYSIS FOR 3-D BEAM WITH HINGE BASED ON FIELD CONSISTENCY
原文传递
导出
摘要 虽然关于几何非线性分析的空间梁单元研究成果较多,但这些单元均是基于几何一致性得到的单元刚度矩阵,而基于场一致性的单元研究则较少,该文基于局部坐标系(随转坐标系)下扣除结构位移中的刚体位移得到的结构变形与结构坐标系下的总位移的关系,直接利用微分方法导出两者增量位移之间的关系,再基于场一致性原则,最终获得空间梁单元在大转动、小应变条件下的几何非线性单元切线刚度矩阵,在此基础上根据带铰梁端受力特征,导出了能考虑梁端带铰的单元切线刚度矩阵表达式,利用该文的研究成果编制了程序,对多个梁端带铰和不带铰的算例进行了空间几何非线性分析,计算结果表明这种非线性单元列式的正确性,实用价值较强。 In the previous study for the geometric nonlinear analysis of a 3-D beam element, the element tangential stiffness matrix is generally acquired by the geometric consistency rather than by field consistency. In this paper, a differentiation method is directly employed to derive the relationship of the incremental displacements between the structural deformation in a local coordinate system and the total displacement in an integral coordinate system. The field consistency is then used to achieve the element tangential stiffness matrix of the 3-D beam element under the conditions of large rotation and small strain. Moreover, according to the mechanical characteristics of a hinged beam, an explicit expression of the non-linear tangent stiffness matrix is derived to consider the effect of the hinged beam. A computer program is developed to analyze the geometrical nonlinear behavior of several classic examples with and without hinges. The results demonstrate the accuracy of the proposed innovative element, and illustrate promising practical value.
出处 《工程力学》 EI CSCD 北大核心 2013年第1期91-98,共8页 Engineering Mechanics
基金 国家自然科学基金项目(51008037)
关键词 空间梁元 场一致性 几何非线性 切线刚度矩阵 3-D beam element hinge field consistency geometric nonlinear tangent stiffness matrix
  • 相关文献

参考文献15

二级参考文献47

  • 1蔡松柏,沈蒲生.大转动平面梁有限元分析的共旋坐标法[J].工程力学,2006,23(A01):69-72. 被引量:28
  • 2Wempner G. Finite elements, finite rotations and small strains of flexible shells [J]. International Journal of Solids & Structures, 1969, 5:117-- 153. 被引量:1
  • 3Belytschko T, Hseih B J. Non-linear transient finite element analysis with convected co-ordinates [J].International Journal for Numerical Methods in Engineering, 1973, 7: 255--271. 被引量:1
  • 4Belytschko T, Glaum L W. Applications of higher order corotational stretch theories to nonlinear finite element analysis [J]. Computers and Structures, 1979, 10: 175-- 182. 被引量:1
  • 5Argris J H, Balmer H, Doltsinis J St. Finite element method-the natural approach [J]. Computer Methods in Applied Mechamics and Engineering, 1979, 17-18: 1-- 106. 被引量:1
  • 6Oran C, Kassimali A. Large deformation of framed structures under static and dynamic loads [J]. Computers & Structures, 1976, 6: 539--547. 被引量:1
  • 7Oran C. Tangent stiffness in space frames [J]. ASCE, Journal of the Structural Division, 1973, 99(6): 973-- 985. 被引量:1
  • 8Crisfield M A, Cole G Co-rotational beam elements for two-and three-dimensional non-linear analysis [C]//Kuhn G. Discretisation Methods in Structural Mechanics, Springer-Verlag, 1989:115-- 124. 被引量:1
  • 9Crisfield M A. A consistent co-rotational formulation for non-linear, three-dimensional beam elements [J]. Computer Methods in Applied Mechamics and Engineering, 1990, 81:131--150. 被引量:1
  • 10Crisfield M A, Moita G F. A corotational formulation for 2-D continua including incompatible modes [J]. International Journal for Numerical Methods in Engineering, 1996, 39: 2619--2633. 被引量:1

共引文献158

同被引文献50

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部