期刊文献+

前屈曲分析中的局部线性化方法 被引量:3

Local linearization mothed in pre-buckling analysis
下载PDF
导出
摘要 非线性有限元分析,最终都归结为求解非线性代数方程组或非线性特征值问题。在增量法的解点上,利用局部线性化方法,将非线性特征值问题化为线性特征值问题。对于特征值问题的求解,本文给出了以主对角元素构造的原点平移加速算法的迭代计算公式。最后通过算例验证了本算法良好的收敛特性,计算结果是令人满意的。 Nonlinear finite element analysis is virtually the solution of nonlinear algebraic equations or characteristic value. On the basis of solution points of incremental method and by adopting local linearization,the nonlinear characteristic value is reduced to linear characteristic value. For the solution of characteristic value, this paper presents an iterative algorithm which speeds up convergence by the origin parallel translation formed from main-diagonal elements. Numerical examples are given to validate the proposed method and satisfactory results are obtained.
出处 《安徽建筑工业学院学报(自然科学版)》 2005年第2期10-13,共4页 Journal of Anhui Institute of Architecture(Natural Science)
  • 相关文献

参考文献4

  • 1Verijenko Ve. Nonlinear-Analysis of Laminated Composite Plates and Shells Including the Effects of Shear and Normal Deformation[J], Composite Structures, 1993,25(1-4):173~185. 被引量:1
  • 2段云岭.非线性方程组的解法:局部弧长法[J].力学学报,1997,29(1):116-122. 被引量:10
  • 3韩承双 周建功.一种简单有效的层合板壳单元[J].南京航空学院学报,1987,:8-16. 被引量:3
  • 4K.J.巴特,E.L.威尔逊. 有限元分析中的数值方法[M].北京:科学出版社, 1991. 被引量:1

共引文献11

同被引文献22

  • 1程再玲,韩承双,叶建乔.非线性层合板壳有限元分析[J].合肥工业大学学报(自然科学版),2005,28(8):901-904. 被引量:3
  • 2程再玲,韩承双,盛宏玉.当前刚度系数在前屈曲分析中的应用[J].河北工业大学学报,2006,35(1):112-116. 被引量:2
  • 3韩承双,程再玲.软件工程与复合材料有限元分析:问题定义[J].安庆师范学院学报(自然科学版),2006,12(1):70-72. 被引量:1
  • 4段云岭.非线性方程组的解法:局部弧长法[J].力学学报,1997,29(1):116-122. 被引量:10
  • 5Noor A K, Burton W S. Assessment of computational models for multi-layered composite shells[J]. Appl Mech Rev, 1990,43:67--97. 被引量:1
  • 6Shen Huishen. Non-linear bending of shear deformable laminated plates under lateral pressure and thermal loading and resting on elastic foundations[J]. Journal of Strain Analysis, 2000,35 : 93--108. 被引量:1
  • 7Mak C K, Kao D W. Finite element analysis of buckling and postbuckling behaviors of arches with geometric imperfections [J]. Comp & Stru,1973,3(1) :149-161. 被引量:1
  • 8Bergan P G, Holand I, Soreide T H. Use of the current stiffness parameter in solution of nonlinear problems[M]// Glowinski R, Rodin E Y, Zienkiewicz O C. Energy Method in Finite Element Analysis. New York: Wiley, 1979: 265--282. 被引量:1
  • 9Mau S T, Gallagher R H. A finite element procedure for nonlinear pre-buckling and initial postbuekling analysis, NASA CR-1936[R]. Washington D C, USA: National Aeronautics and Space Adrninstration, 1972. 被引量:1
  • 10Murray D W, Wilson E L. Finite Postbuclding Analysis of Thin Elastic Plates [J]. AIAA J 1969, 7 (10): 1 915-1 920. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部