期刊文献+

基于超图的多模态关联特征处理方法 被引量:8

Multimodal Correlation Feature Processing Method Based on Hypergraph
下载PDF
导出
摘要 传统的模式识别方法认为特征是相互独立的,容易忽略多模态特征之间多元的关联性,从而造成识别的误差。为此,基于超图模型,提出一种新的特征整合方法。定义共享熵的计算方法用以表示多个特征之间的关联程度,以每个特征作为顶点,特征之间的多元关系作为超边。对形成的超图,定义模块度函数取代传统的切边数,作为衡量子超图的社团特性强弱的指标,应用超图分割算法,对原始的多模态特征进行聚类划分。在划分集合上采用多分类Boosting方法,形成最终的强分类器。实验结果表明,与线性支持向量机、多核学习等当前流行的特征融合方法相比,该方法能有效提高识别准确率。 Features are usually considered as independent of each other in traditional pattern recognition methods.The neglect of the correlation among multimodal features is part of the reason for recognition error.Aiming at integrating multimodal features,this paper presents a hypergraph framework.Under hypergraph model,this paper defines a new measure called shared entropy to capture the multivariate correlation among the multimodal features.Each feature is abstracted as a vertex,and if the value of shared entropy reaches the threshold,a hyperedge can be built.Then,the hypergraph is clustered into a set of partitions using the modularity instead of cut-edges to measure the community degree of sub-hypergraphs.Finally,combining the weak classifiers learned from each partition,a multiclass Boosting method is used to form the last strong classifier.Experimental results show that this method can improve the recognition accuracy effectively compared with the current popular methods such as linear Support Vector Machine (SVM) and Multiple Kernel Learning (MKL).
出处 《计算机工程》 CAS CSCD 北大核心 2017年第1期226-230,共5页 Computer Engineering
基金 国际科技合作项目(2013DFA12460)
关键词 超图 多模态特征 共享熵 模块度 分类器 hypergraph multimodal feature shared entropy modularity classifier
  • 相关文献

参考文献2

二级参考文献10

  • 1李盼池,许少华.支持向量机在模式识别中的核函数特性分析[J].计算机工程与设计,2005,26(2):302-304. 被引量:98
  • 2[1]MINNS A W,HALL M J.Artificial neural networks as rainfall-runoff models[J].J.Hydrol.Sci.J.1996,41:339-417. 被引量:1
  • 3[2]KARUNANITHI N,GRENNEY W J,WHITLEY D,et al.Neural networks for river flow prediction[J].J.Computing Civil Engng..1994,8:201-219. 被引量:1
  • 4[3]HSU K,GURUCAN S.River flow prediction using the cascade-correlation neural network learning architecture[C].Proceedings of the Water 99 Joint Congress,Brisbane,Australia;1999.94-99. 被引量:1
  • 5LUNTS A,BRAILOVSKIY V.Evaluation of attributes obtained in Statistical Decision Rules[J].Engineering Cybemetics,1967(3):98-109. 被引量:1
  • 6CHAPELLE O,VAPINK V N.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46:131-159. 被引量:1
  • 7LUNTS A,BRAILOVSKIY V.Evaluation of attribtes obtained in statistical decision rules[J].Engineering Cybernetics,1967,3(1):982-1009. 被引量:1
  • 8MURPHY P M,AHA IRVINE D W.CA:University of california,department of information and computer science[EB/OL].http://www.ics.uci.edu/~mlearn/ MLRepository.html,1994. 被引量:1
  • 9KEERTHI S,CHIH J.Asymptotic behavior of support vector machines with gaussian kernel[J].Neural Computation,2003,15:1667-1689. 被引量:1
  • 10VAPINK V N.The nature of statistical learning theory[M].New York:Springer Verlag,2000. 被引量:1

共引文献151

同被引文献62

引证文献8

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部