期刊文献+

基于最小二乘支持向量机的疲劳裂纹扩展预测 被引量:4

On Prediction of Crack Growth Using Optimized Least Square Support Vector Machine
下载PDF
导出
摘要 根据腐蚀疲劳裂纹在扩展过程中受到多种环境因素影响,裂纹扩展预测难精确的特点,本文提出了基于遗传算法参数优化的最小二乘支持向量机方法来预测结构腐蚀疲劳裂纹扩展。该算法采用遗传算法优化最小二乘支持向量机的模型参数,从而避免了算法陷入局部最优解,实现了精确度高、泛化能力强的裂纹扩展预测模型。最后通过对已有文献的某试件裂纹扩展的实验数据进行建模分析。结果表明:基于遗传算法的最小二乘支持向量机预测方法优于神经网络算法、蚁群算法,预测误差较小,具有很好的预测能力。 Since crack growth is complicated and difficult to measure, a method of parameter optimized least square support vector machine is presented to predict crack growth. Genetic algorithm is used to optimize the parameters of the least square support vector machine (LS-SVM) for avoiding local optimal solution. Therefore, our optimized model of crack growth is more accurate and comprehensive in crack growth prediction. The training and measuring data of crack growth used in this paper is obtained from Reference[ 14]. Finally, the prediction results of the optimized LS-SVM are compared with neural network and ant colony optimization. The comparison shows that the LSSVM based on genetic algorithm model is more accurate for the prediction of crack growth.
作者 吴昊 左洪福
出处 《机械科学与技术》 CSCD 北大核心 2008年第11期1346-1350,共5页 Mechanical Science and Technology for Aerospace Engineering
基金 国家高技术研究发展计划项目(863计划)(2006AA04Z427) 国家自然科学基金委员会与中国民用航空总局联合项目(60672164)资助
关键词 疲劳 裂纹扩展 最小二乘支持向量机 遗传算法 优化 fatigue crack growth least square support vector machine genetic algorithm optimization
  • 相关文献

参考文献14

二级参考文献79

共引文献237

同被引文献39

  • 1康健,左宪章,唐力伟,李浩,师小红.基于灰色支持向量机的裂纹扩展信息预测研究[J].机械强度,2010(5):810-813. 被引量:10
  • 2秦海勤,徐可君,江龙平.疲劳裂纹扩展的灰色系统预测[J].汽轮机技术,2005,47(1):76-78. 被引量:8
  • 3江龙平,徐可君.疲劳裂纹三维动态扩展灰色系统预测[J].机械工程学报,2006,42(1):86-89. 被引量:12
  • 4Lu S,Yu F J.Fault pattern recognition of bearing based on princi-pal components analysis and support vector machine[A].2009Second International Conference on Intelligent ComputationTechnology and Automation[C] ,2009:533~536. 被引量:1
  • 5Ma W X,Li M.Fault pattern recognition of rolling bearings base-don wavelet packet and support vector machine[A].Proceedingsof the 27 Chinese Control Conference[C] ,2008:16~18,Kun-ming,Yunnan,China. 被引量:1
  • 6SAIN T,CHANDRA KISHEN J M. Probabilistic assessment of fatigue crack growth in concrete[J]. International Journal of Fatigue,2008,30(12) :2156-2164. 被引量:1
  • 7SHAN S G,CHANDRA KISHEN J M. Use of acoustic emis- sions in flexural fatigue crack growth studies on concrete[J]. Engineering Fracture Mechanics, 2012,87 : 36-47. 被引量:1
  • 8CARPINTERI A,SPAGNOLI A,SABRINA V. A multiracial analysis of fatigue crack growth and its application to concrete [J].ngineering Fracture Mechanics, 2010,77 (6) : 974-984. 被引量:1
  • 9RAY S, CHANDRA KISHEN J M. Fatigue crack propagation model and size effect in concrete using dimensional analysis [J]. Mechanics of Materials,2011,43(2) : 75-86. 被引量:1
  • 10CRISTIAN G, JEFFERY P, SURENDRA S. Fatigue crack growth prediction in concrete slabs[J]. International Journal of Fatigue,2009,31(8/9) :1309-1317. 被引量:1

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部