期刊文献+

k-超图的直径

On the diameter of k-hypergraphs
下载PDF
导出
摘要 研究超图的直径,首先给出直径与拉普拉斯张量最大特征值的关系;其次给出直径与秩k的关系;最后给出直径为1的极小k-超图的边数的下界,并证明对任意的k,下界都是紧的. The diameter of hypergraphs is studied in this paper. First of all, we introduce the relation be- tween the diameter and the maximal eigenvalue of the Laplacian tensor of hypergraphs. Secondly, we in- troduce the relation between the diameter and the rank of hypergraphs. Finally, we obtain a lower bound of the minimum number of edges of a k-hypergraph with diameter 1, moreover, we prove the bound is sharp for any given k.
出处 《闽江学院学报》 2013年第5期5-7,14,共4页 Journal of Minjiang University
基金 福建省中青年教师教育科研项目(JB13194) 闽江学院科研项目(YKQ1009) 福建省教育厅科技项目(JA12266)
关键词 超图 直径 张量 特征值 hypergraph diameter tensor eigenvalue
  • 相关文献

参考文献2

二级参考文献12

  • 1张淑琴.EXISTENCE OF SOLUTION FOR A BOUNDARY VALUE PROBLEM OF FRACTIONAL ORDER[J].Acta Mathematica Scientia,2006,26(2):220-228. 被引量:27
  • 2Bollobas, B.: Modern Graph Theory, Springer-Verlag, New York, 1998. 被引量:1
  • 3Merris, R.: Laplacian matrix of graph: A survey. Linear Algebra Appl., 197-198, 143-176 (1994). 被引量:1
  • 4Fiedler, M.: Algebraic connectivity of graph. Czechoslovak Math. J., 23, 298-305 (1973). 被引量:1
  • 5Mohar, B.: Eigenvalues, diameter and mean distance in graphs. Graphs Combin., 7, 53-64 (1991). 被引量:1
  • 6Alon, N., Milman, V. D.: λ1, isoperimetric inequalities for graphs and superconcentrators. J. Combin. Theory Set. B, 38, 73-88 (1985). 被引量:1
  • 7Chung, F. R. K.: Diameters arid eigenvalues. J. Amer. Math. Soc., 2, 187-196 (1989). 被引量:1
  • 8Lu, M., Zhang, L. Z., Tian, F.: Lower bounds of the Laplacian spectrum of graphs based on diameter. Linear Algebra Appl.,420,400-406 (2007). 被引量:1
  • 9Hoffman, A. J.: On eigenvalues and colorings of graphs. In: Graph Theory and Its Applications (ed. B. Harris), Academic Press, New York-London, 1970, 79-91. 被引量:1
  • 10Horn, R. A., Johnson C. R.: Matrix Analysis, Cambridge Univ. Press, Cambridge, 1985. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部