期刊文献+

基于社交关系和条件补全的协同过滤推荐算法 被引量:4

Collaborative Filtering Recommendation Algorithm Based on Social Relation and Condition Completion
下载PDF
导出
摘要 针对传统协同过滤算法中存在数据稀疏、数据冗余和算法效率低等问题,提出一种基于社交关系和条件补全的协同过滤推荐算法.该算法将社交关系数据应用到矩阵补全过程中,减小原始矩阵的稀疏度,同时提高补全数据的精确度;在项目相似性计算时,条件性地选择参与计算的向量数据,减少数据的冗余度,并降低算法的时间复杂度.实验结果表明,改进算法的推荐准确率明显提高. Aiming at the problems that traditional collaborative filtering algorithm existed data sparseness,data redundancy and low efficiency,we proposed a collaborative filtering recommendation algorithm based on social relation and condition completion.The algorithm applied the data of social relationship into the process of matrix completion to reduce the sparse degree of the original matrix and improve the accuracy of the data completion.The vector data involved in computation was conditionally chosen to reduce the redundancy of the data and the time complexity of the algorithm in the computation of the project similarity.The experimental results show that the accuracy of recommendation of the proposed algorithm is obviously improved.
作者 张为民 李坷露 李永丽 ZHANG Weimin LI Kelu LI Yongli(Department of General Teaching and Researching, J ilin Provincial Institute of Education, Changchun 130022, China College of Computer Science and Technology, Jilin University, Changchun 130012, China School of Computer Science and Technology, Northeast Normal University, Changchun 130117, China)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第5期1244-1248,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61272209)
关键词 社交关系 条件补全 协同过滤 推荐准确率 social relation condition completion collaborative filtering accuracy of recommendation
  • 相关文献

参考文献1

二级参考文献12

  • 1崔林,宋瀚涛,陆玉昌.基于语义相似性的资源协同过滤技术研究[J].北京理工大学学报,2005,25(5):402-405. 被引量:8
  • 2Melville P, Mooney R J, N~tgarajan R.Content-boosted collaborative filtering for improved recommendations[C]// Proceedings of the Eighteenth National Conference on Artificial Intelligence (AAAI-2002) , Edmonton, Canada, 2002 : 187-192. 被引量:1
  • 3Adomavicius G, Tuzhilin A.Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J].IEEE Transactions on Knowl- edge and Data Engineering, 2C 05,17 (6) : 734-749. 被引量:1
  • 4Schafer J B,Dan F,Jon H, et al.Collaborative filter- ing recommender systems[M].[S.1.]:Springer-Verlag,2007: 291-324. 被引量:1
  • 5Herlocker J L, Konstan J A, Botchers A, et al.An algorith- mic framework for performing collaborative filtering[C]// Proceedings of the 22nd Annual International ACM SI- GIR Conference on Research and Development in In- formation Retrieval.Berkeley, California, United States: ACM, 1999 : 230-237. 被引量:1
  • 6Sarwar B, Karypis G,Konstan J, et al.Incremental singu- lar value decomposition algorithms for highly scalablerecommender systems[C]//Fifth International Conference on Computer and Information Science,2002 : 27-28. 被引量:1
  • 7Basu C.Recommendation as classification and recommen- dation as matching: two information-centered approaches to recommendation[D].New Brunswick, NJ : Rutgers Uni- versity, 2002. 被引量:1
  • 8Shih Ya-Yueh, Liu Duen-Ren.Hybrid recommendation ap- proaches: collaborative filtering via valuable content in- formation[C]//Proceedings of the 38th Annual Hawaii In- ternational Conference on System Sciences, HICSS' 05, 2005. 被引量:1
  • 9吴湖,王永吉,王哲,王秀利,杜栓柱.两阶段联合聚类协同过滤算法[J].软件学报,2010,21(5):1042-1054. 被引量:83
  • 10黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217

共引文献14

同被引文献27

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部