期刊文献+

基于混合相似度和信任传播的位置推荐系统 被引量:2

LOCATION RECOMMENDATION SYSTEM BASED ON HYBRID SIMILARITY AND TRUST PROPAGATION
下载PDF
导出
摘要 当前存在大量基于位置推荐的移动社交应用。提出一种基于CF算法的混合相似度和信任传播位置推荐系统的方案。方案中主要分三个考量要素,首先将用户偏好分为用户静态偏好和用户动态偏好,对于用户静态偏好主要是基于位置的种类信息和历史评价,而用户动态偏好主要是基于地理信息和二位云模型,最后用户的社会关系是基于信任传播的信息。该方法优势是不仅考虑用户偏好的多样性,而且通过信任传播可以有效缓解数据稀疏性问题。并应用Hadoop以提高计算平台的数据处理能力。该方案对比现有方法,基于CF算法的位置推荐预测用户对新位置的喜好更加准确且高效。 Nowadays there are a large number of mobile social applications based on location recommendation. This paper proposes a method to provide a hybrid similarity and trust propagation location recommendation system based on CF algorithm. The scheme consists of three elements,and the user preference is divided into user static preferences and user dynamic preferences. Static user preference is mainly type information and historical evaluation based on the location,and the dynamic user preference is based on geographic information and two-dimensional cloud model. The users' social relationship is based on the information that is propagated by trust. The advantage of this method is that not only the diversity of user preferences is considered,but also the data sparseness can be effectively alleviated by trust propagation.And apply Hadoop to improve the data processing ability of computing platform. Compared with the existing methods,the proposed location recommendation based on CF algorithm is more accurate and efficient to predict the users' preferences for new locations.
出处 《计算机应用与软件》 2017年第9期97-102,137,共7页 Computer Applications and Software
关键词 位置推荐 信任传播 协同过滤 MAPREDUCE Location recommendation Trust propagation Collaborative filtering MapReduce
  • 相关文献

参考文献2

二级参考文献30

  • 1黄海清,张平,张曦文.基于用户偏好的智能业务选取研究[J].电子学报,2006,34(B12):2537-2540. 被引量:3
  • 2Chen Ji-lin,Geyer Werner,Dugan Casey,et al. Make new friends, but keep the old: recommending people on social networking sites [C]. Proceedings of the 27th International Conference on Human Factors in Computing Systems,2009:201 -210. 被引量:1
  • 3Papadimitriou Alexis, Symeonidis Panagiotis, Manolopoulos Yan-nis. Friendlink; link prediction in social networks via bounded local path traversal [ C ]. International Conference on Computational Aspects of Social Networks,2011:66-71. 被引量:1
  • 4Chu Cheng-hao,Wu Wan-chuen,Wang Cheng-chi,et al. Friend recommendation for location-based mobile social networks [ C ]. The 7 th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing,2013:365-370. 被引量:1
  • 5Zhou De-quan,Wang Bin,Rahimi Seyyed Mohammadreza,et al. A study of recommending locations on location-based social network by collaborative filtering [ C ]. The 25 th Canadian Conference on Artificial Intelligence,2012:255 -266. 被引量:1
  • 6Ye Mao, Yin Pei-feng, Lee Wang-Chien. Location recommendation for location-based social networks[C]. The 18th ACM SIGSPA-TIAL International Symposium on Advances in Geographic Information Systems,2010:458-461. 被引量:1
  • 7Ye Mao, Yin Pei-feng, Lee Wang-Chien, et al. Exploiting geographical influence for collaborative point-of-interest recommendation[C]. Proceeding of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval,2011: 325-334. 被引量:1
  • 8Cheng Chen,Yang Hai-qin,King Irwin,et al. Fused matrix factorization with geographical and social influence in location-based social networks [ C ]. Proceedings of the 26th AAAI Conference on Artificial Intelligence,2012. 被引量:1
  • 9Ma Hao,King Irwin,Lyu Michael R. Learning to recommend with social trust ensemble[C]. Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,2009:203-210. 被引量:1
  • 10Hao Ma,Irwin King,Michael R. Lyu:Learning to recommend with explicit and implicit social relations [ J ]. ACM Transactions on Intelligent Systems and Technology,2011,2(3) :29-33. 被引量:1

共引文献36

同被引文献24

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部