期刊文献+

基于用户兴趣模型聚类的协同过滤推荐算法 被引量:2

Collaborative Filtering Recommendation Algorithm Based on Clustering of User Interest Model
下载PDF
导出
摘要 随着电子商务的飞速发展,协同过滤推荐系统得到了广泛应用。本文针对传统协同过滤方法难以准确确定目标用户的最近邻居且推荐实时性能不高的问题,引入用户兴趣模型的概念并在此基础上给出一种基于用户兴趣模型聚类的协同过滤算法。实验结果表明,该算法可以提高最近邻居计算的准确性,提高推荐系统实时性能。 With the rapid development of e-commerce, collaborative filtering recommendation system has been widely used. In this paper, to address the low accuracy of identifying nearest neighbors and low real-time performance of recommendation in traditional collaborative filtering algorithms, the concept of user interest model is introduced. Based on clustering of user interest model, a collaborative filtering recommendation algorithm is proposed. The experimental results suggest that this algorithm can efficiently improve the accuracy of computing nearest neighbor and improve the real-time performance of recommendation system.
出处 《微计算机信息》 2010年第33期235-236,240,共3页 Control & Automation
关键词 协同过滤 推荐系统 用户兴趣模型 推荐算法 collaborative filtering recommendation system user interest model recommendation algorithm
  • 相关文献

参考文献6

二级参考文献43

共引文献209

同被引文献17

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部