期刊文献+

基于相似模式聚类的电子商务网站个性化推荐系统研究 被引量:6

Research on Personalized Recommender Systems Based on Similar Pat tern Clustering for E-Commerce
下载PDF
导出
摘要 保证个性化推荐系统产生高质量的推荐结果的重要因素是:系统必须要确定访问者在访问行为的相似程度,从而能预测访问者的访问和购买兴趣。实现此功能的关键技术是计算访问者对象在整个或者部分属性空间的相似距离,从而得到访问行为的相似程度。该文首先分析了目前在推荐系统中常用的用于计算访问行为相似程度的距离函数,发现它们是测定访问者对象在所有测试属性空间上的平均测定,而在属性集的子维空间上的相似模式并没有有效地挖掘出来。然后提出一种新的基于相似模式聚类算法的电子商务个性化推荐系统,综合考虑可供挖掘的数据源(如:网站内容,网站的超链接结构,顾客访问网站的行为,以及商业的实际购买情况,顾客的身份数据等)获取用户访问电子商务网站的访问页面序列,构建较高购买者的顾客行为的矩阵模型,高效地得到访问者对象在整个或者部分属性空间的相似访问行为,然后通过挖掘潜在购买者与较高购买者的相似模式特征,帮助顾客发现他所希望购买的产品信息,用于提高实际购买量,实验数据表明,该系统高效并可广泛使用。 In the applications of recommendation systems in the E-commerce,sets,customers /clients with similar behav-ior need to be indentified so that we can predict customers' interest and make quality recommendation.The key technol-ogy to produce high quality recommendation is to define similarity among different objects by distances over either all or only a subset of the dimensions.Some well-known distance functions are not always capture correlations among the object.The paper proposes a novel similar pattern clustering algorithm that can discover the similar pattern that exhibit a coherent pattern on a subset of dimensions.Based on similar pattern clustering,we give a Personalized Recommender Systems for E-Commerce,the importance goals of recommender system for E-commerce is to increase sales of existing produces by matching customers to the products that will be most likely to purchase.When Visitors navigate though a company`s web site,the similarities in navigational behavior of top-selling visitors can help to increase turnover.New recommender system technologies can quickly produce high quality recommendations.It shows that the system is high ef-ficiency and can be widely used,or is also a suitable technique for recommender system on E-commerce site.
作者 王太雷
出处 《计算机工程与应用》 CSCD 北大核心 2005年第6期152-157,共6页 Computer Engineering and Applications
关键词 个性化推荐系统 相似模式聚类 电子商务 recommender systems ,similar pattern clustering,E-commerce
  • 相关文献

参考文献16

  • 1林鸿飞.基于混合模式的文本过滤模型[J].计算机研究与发展,2001,38(9):1127-1131. 被引量:22
  • 2R Agrawal,R SRIKANT.Fast Algorithms for Mining Association Rules[C].In:Proe of the 20th VLDB Conf,1994:487-499. 被引量:1
  • 3R Agrawal,R SRIKANT.Mining sequential patterns[C].In:Proc of the intl Conf on Data Engineering,1995. 被引量:1
  • 4Park J,Chen M,Yu P.An Effective Hash-based Algorithm for Min- ing Association Rules[C].In:Preceedings of ACM SIGMOD Conf on Management of Data, 1995. 被引量:1
  • 5Agarwal R C ,Aggarwal C ,Prasad V V V.A Tree Projection Algorithm for Generation of Frequent Itemsets[J].Joumal of Parallel and Distributed Computing,2000. 被引量:1
  • 6Herlocker J,Konstan J,Borchers A.An Algorithmic Framework for Performing Collaborative Filtering[C].In:Proceedings of ACM SIGIR99 ALM PRESS, 1999. 被引量:1
  • 7X Fu,J Budzik,K J Hammond.Mining navigation history for recommendation[C].In:Proe of the international Conf on Intelligent user interfaces,ACM.New Orleans, LA, ACM, 2000:106-112. 被引量:1
  • 8Konstan J ,Miller B,Mahz D.GmupLens:Applying Collaborative Filtering to Usenet News[J].Communications of the ACM,1997;40(3): 77-78. 被引量:1
  • 9Badrul M Sarwar,George Karypis,Joseph A Konstan et al.Application of DimensionaIity Reduction in Recommender System-A Case Study[C].In: WEBKDD, 2000. 被引量:1
  • 10R Agrawal,J Gehrke,D Gunopulos et al.Authomatic subspace clusterlng of high dimensional data for data mining applicafions[C].In: SIGMOD, 1998. 被引量:1

二级参考文献4

共引文献68

同被引文献33

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部