期刊文献+

含水体的合成孔径雷达图像配准 被引量:7

Image Registration of Synthetic Aperture Radar Including Body of Water
原文传递
导出
摘要 水体是合成孔径雷达(SAR)图像解译的一类重要内容。针对含水体的SAR图像的成像特点,给出了一种基于轮廓的配准方法。首先,提出了融合观测图像局部统计信息的自适应权马尔科夫随机场(MRF)分割模型,以分割SAR图像水体目标并提取其精确轮廓。然后,提出了轮廓匹配的非均匀高斯混合模型(GMM),该模型能融合轮廓上点的位置信息和以轮廓点为中心的窗口的灰度相似性信息。最后,对含水体目标的SAR图像进行配准实验。结果显示所提出的MRF分割模型能精确地定位目标边缘并保持图像的细节,轮廓匹配的非均匀GMM对噪声、外点及局部变形具有稳健性,能较好地实现含水体目标的SAR图像配准。 Body of water is a kind of important content of synthetic aperture radar (SAR) image interpretation. In this paper, a registration method, which is based on the contours and aiming at the imaging features of SAR image including body of water, is proposed. At first, an adaptive weighting Markov random field (MRF) segmentation model which is integrating local statistical information of observed image is proposed to segment the target of water body of SAR image and accurately extract its contour, Then, a non-uniform Gaussian mixture model (GMM) of contour matching is proposed. The mixture model can integrate both the location information of point of contours and the gray scale similarity information of windows including the contour points as the centers. At last, the registration experiments of SAR image including body of water are conducted. Results show that the proposed MRF segmentation model can accurately locate the edge of object and reserve the details of image. The non-uniform GMM for contours matching is robust to noise, outliers and local deformation, which can achieve the registration of SAR image including body of water better.
作者 贺飞跃 赵伟
出处 《光学学报》 EI CAS CSCD 北大核心 2017年第9期295-303,共9页 Acta Optica Sinica
基金 国家自然科学基金青年科学基金(11501436) 陕西省教育厅专项科研计划项目(16JK1326) 西安工程大学博士科研启动基金(BS1420)
关键词 遥感 合成孔径雷达 图像配准 非均匀高斯混合模型 马尔科夫随机场 轮廓 remote sensing synthetic aperture radar image registration non-uniform Gaussian mixture model Markov random field contour
  • 相关文献

参考文献6

二级参考文献59

  • 1曾子芳,潘建平.基于大津法求阈值的变化矢量分析法[J].测绘与空间地理信息,2013,36(3):50-52. 被引量:9
  • 2贾承丽,匡纲要.SAR图像自动道路提取[J].中国图象图形学报,2005,10(10):1218-1223. 被引量:10
  • 3薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 4Tang A W K, Ng T P, Hung Y S, et al. Projective Reconstruction from Line-Correspondences in Multiple Uncalibrated Images. Pattern Recognition, 2006, 39 (5) : 889 - 896 被引量:1
  • 5Aider O A, Hoppenot P, Colle E. A Model-Based Method for Indoor Mobile Robot Localization Using Monocular Vision and Straight-Line Correspondences. Robotics and Autonomous Systems, 2005, 52(2/3 ) : 229 - 246 被引量:1
  • 6Shi Fanhuai, Wang Jianhua, Zhang Jing, et al. Motion Segmentation of Multiple Translation Objects from Line Correspondences. Pat- tern Recognition, 2005, 38(10) : 1775 -1778 被引量:1
  • 7Bartoli A, Sturm P. Multiple-View Structure and Motion from Line Correspondences // Proc of the IEEE International Conference on Computer Vision. Madison, USA, 2003 : 207 -212 被引量:1
  • 8Belongie S, Malik J, Puzicha J. Shape Matching and Object Recognition Using Shape Contexts. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(4) : 509 -522 被引量:1
  • 9Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 2004, 60 ( 2 ) : 91 -110 被引量:1
  • 10Ke Yan, Sukthankar R. PCA-SIFF: A More Distinctive Representation for Local Image Descriptors// Proc of the IEEE International Conference on Computer Vision and Pattern Recognition. Washington, USA, 2004, II : 506 -513 被引量:1

共引文献72

同被引文献52

引证文献7

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部