期刊文献+

SAR图像水域的改进Shearlet边缘检测 被引量:16

Improved shearlet edge detection for waters of SAR images
原文传递
导出
摘要 SAR图像水域边缘检测中,传统算法由于不能较好地克服斑点噪声影响,因此检测出的虚假边缘较多。利用多尺度几何Shearlet变换对曲线精确有效检测等特点,通过改进Shearlet变换并结合聚类及Snake模型等方法,提出了一种新的SAR图像水域检测方法。实验结果表明,该方法不仅提高了边缘检测的完整性和精确性,而且有效克服了斑点噪声的影响,对SAR图像水域边缘的检测是有效可行的。 For SAR image waters edge detection, the traditional algorithm can not suppress speckle noise,so there are many false edges in the results. Based on Shearlet transform, a kind of multi-scale geometric transformations, which represent curves accurately and effectively, we propose an improved Shearlet transform. Combining improved Shearlet transform with clustering and snake model, a new method of waters edge detection for SAR image is performed. Experiments show that new method can not only reduce influence of speckle noise, but improve the integrity and accuracy of edge detection, and it is efficient and effective for SAR image waters edge detection.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第10期1549-1554,共6页 Journal of Image and Graphics
基金 国家自然科学基金项目(60971128 60672126 60673097) 国家高技术研究发展计划(863)项目(2007AA12Z136)
关键词 SHEARLET变换 SAR图像 水域 边缘检测 shearlet transform SAR image water edge detection
  • 相关文献

参考文献12

  • 1Jongsen L, Jurkevich I. Coastline detection and tracing in SAR image [ J ]. IEEE Transactions on Geoseienee and Remote Sensing, 1990, 28(4) : 662-668. 被引量:1
  • 2Descombes X, Moctezuma M, Maitre H, et al. Coastline detection by a markovian segmentation on SAR images [ J]. Signal Processing, 1996, 1(55): 123-132. 被引量:1
  • 3Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models, international journal of computer vision [ J]. 1988, 1(4): 321-331. 被引量:1
  • 4Niedermeier A, Romaneeben E. Detection of coastlines in SAR images using wavelet methods [ J ]. IEEE Transactions on Geoseienee and Remote Sensing, 2000, 38 (5): 2270-2281. 被引量:1
  • 5胡正磊,孙进平,袁运能,毛士艺.基于小波边缘提取和脊线跟踪技术的SAR图像河流检测算法[J].电子与信息学报,2007,29(3):524-527. 被引量:16
  • 6桑农,唐奇伶,张天序.基于初级视皮层抑制的轮廓检测方法[J].红外与毫米波学报,2007,26(1):47-51. 被引量:30
  • 7Labate D, Lim W, Kutyniok G, et al. Sparse multidimensional representation using shearlets [ C ]//Proceedings of SPIE conference on Wavelet Applications in Singal and Image Processing XI. San Diego,USA: SPIE, 2005, 5914: 254-262. 被引量:1
  • 8Easley G R, Labate D, Lim W. Sparse directional image representations using the discrete shearlet transform [ J]. Applied and Computational Harmonic Analysis, 2008, 1 (25): 25-46. 被引量:1
  • 9Shcng Y, Labate D, Easley G R, et al. Edge detection and processing using shearlets [ C ]//Proceedings of IEEE International Conference on Image Processing. San Diego, USA : IEEE Signal Processing Society, 2008 : 1148-1151. 被引量:1
  • 10Sheng Y, Labate D, Easley G R. A shearlet approach to edge analysis and detection [ J ]. IEEE Transactions on Image Processing, 2009, 18(5) : 929-941. 被引量:1

二级参考文献18

  • 1成金勇,范延滨,宋洁,潘振宽.基于小波分析与Snake模型的图像边缘检测方法[J].青岛大学学报(自然科学版),2005,18(1):77-81. 被引量:9
  • 2常洪花,张建奇,李勇.背景杂波对经典人眼目标获取性能模型的修正[J].红外与毫米波学报,2005,24(6):450-454. 被引量:4
  • 3吴宏刚,李晓峰,陈跃斌,李在铭.空时自适应杂波分类抑制与弱小运动目标检测[J].红外与毫米波学报,2006,25(4):301-305. 被引量:9
  • 4Dragoi V, Sur M. Dynamic properties of recurrent inhibition in primary visual cortex: contrast and orientation dependence of contextual effects [J]. J. Neurophysiol. , 2000, 83(2) :1019-1030. 被引量:1
  • 5Grigorescu C, Petkov N, Westenberg M A. Contour detection based on nonclassical receptive field inhibition [ J ]. IEEE Trans. IP, 2003, 12 (7) : 729-739. 被引量:1
  • 6Jain A K, Farrokhnia F. Unsupervised texture segmentation using Gabor filters [ J ]. Pattern Recognition, 1991, 2,4 (12) : 1167-1186. 被引量:1
  • 7Knierim J J, van Essen C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkeys [J].J. Neurophysiol. , 1992, 67(4) : 961-980. 被引量:1
  • 8Kapadia M K, Westheimer G, Gilbert C D. Spatial distribution of contextual interactions in primary visual cortex and in visual perception [ J ]. J. Neurophysiol. , 2000, 84 (4) : 2048-2062. 被引量:1
  • 9Canny J F. A computational approach to edge detection [J]. IEEE Trans. PAMI, 1986, 8(6): 679-698. 被引量:1
  • 10Martin D R, Fowlkes C C , Malik J.Learning to detect natural image boundaries using local brightness, color, and texture cues [J]. IEEE Trans. PAMI, 2004, 26(5): 530- 549. 被引量:1

共引文献44

同被引文献217

引证文献16

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部