期刊文献+

基于粗糙数据推理的Criminisi图像修复算法 被引量:11

Criminisi Image Inpainting Algorithm Based on Rough Data-Deduction
原文传递
导出
摘要 Criminisi算法作为优秀的图像修复算法代表,在修复部分破损图像时可获得较好的视觉效果,但该算法在进行匹配块搜寻时,待修复块提供的信息量较少,因此可匹配范围小。针对这一问题,提出了一种基于粗糙数据推理理论的改进Criminisi图像修复算法,粗糙数据推理可以扩展搜索空间,增加搜索数据,扩大搜索范围,加深搜索深度。该算法在搜索规则上有以下改进:通过图像结构信息将图像内容划分为一个数据集,再通过粗糙数据推理扩充待修复块信息量,扩大匹配块可寻范围,以此搜索匹配块,修复破损图像。结果表明,与经典的Criminisi算法相比,改进后的算法能够扩展匹配块的数据量,可搜索到更多数据,获得较好的视觉效果,提高了图像的峰值信噪比。 The Criminisi algorithm,as one representative of excellent image inpainting algorithms,can used to obtain a better visual effect when partially damaged images are inpainted,but when this algorithm is used to perform the matching block search,the matching range is too small because the amount of information provided by the blocks to be repaired is less during the matching block search.For this problem,an improved Criminisi image inpainting algorithm based on rough data-deduction is proposed,in which rough data-deduction can be used to expand the search space,increase the search data,expand the search scope,and deepen the search depth.The proposed algorithm has some improvements in the search rules.The image content is divided into a dataset according to the structural information of images.The amount of pending repairing information is extended by rough data-deduction.The matching block search range is expanded.Based on these,the matching blocks are searched and the broken images are repaired.The results show that compared with the traditional Criminisi algorithm,the improved algorithm can be used to expand the matching block data sizes,search more data,obtain better visual effects,and improve the peak signal-to-noise ratio of images.
作者 周宁 朱昭昭 Zhou Ning;Zhu Zhaozhao(School of Electronics and Information Engineering,Lanzhou Jiaotong University,Lanzhou,Gansu 730070,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2019年第2期84-91,共8页 Laser & Optoelectronics Progress
基金 国家自然科学基金(61650207 61741113)
关键词 图像处理 图像修复 匹配块搜索 粗糙数据推理 Criminisi算法 image processing image inpainting matching block search rough data-deduction Criminisi algorithm
  • 相关文献

参考文献13

二级参考文献115

  • 1屈磊,韦穗,梁栋,王年.快速自适应模板图像修复算法[J].中国图象图形学报,2008,13(1):24-28. 被引量:13
  • 2彭宏京,侯文秀,宫宁生.改进的基于样例修补的目标移除方法[J].计算机辅助设计与图形学学报,2006,18(9):1345-1349. 被引量:13
  • 3Bertalmio M, Sapiro G, Caselles V, etal. Image inpainting[ C]//Proceeding of the 27th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 2000: 417 - 424. 被引量:1
  • 4Chan T F, Shen J. Mathematical models for local non-texture inpalntings [ J ]. SIAM Journal on Applied Math, 2001, 62 (3) : 1 019 - 1 043. 被引量:1
  • 5Chan T F, Shen J. Non - texture inpainting by curvature - driven diffusions (CDD) [ J ]. Journal of Visual Communication and Image Representation, 2001,4(12) : 436 -449. 被引量:1
  • 6Igehy H, Pereira L. Image replacement through texture synthesis[ C ]//Proceeding of IEEE Interniational Conference on Image Processing. [s.l]: IEEE, 1997: 186-189. 被引量:1
  • 7Criminisi A, Perez P, Toyama K. Object removal by exemplar-based inpalnting[ C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison: IEEE, 2003:721 -728. 被引量:1
  • 8张平,檀结庆,何蕾.基于离散小波变换的图像修补方法[J].计算机应用研究,2007,24(9):287-289. 被引量:9
  • 9朱宪伟.基于结构特征的异源图像配准技术研究[D].长沙:国防科学技术大学,2009. 被引量:1
  • 10Bertalmio M, Sapiro G, Caselles V, et al. Image inpainting[A]. Proceedings of ACM SIGGRAPH [ C ]. New Orleans: ACM Press, 2000.417 - 424. 被引量:1

共引文献192

同被引文献92

引证文献11

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部