期刊文献+

面向航天医学应用的体液预处理仪研制 被引量:5

Development of a body fluids pretreatment instrument for aerospace medicine
下载PDF
导出
摘要 本文基于微流控技术研制了面向航天医学应用的体液预处理芯片及仪器,以便对航天员体液进行医学检测。体液预处理芯片集成了驱动液体和控制流路的微泵微阀,通过控制微泵微阀可实现从进样、不同功能的预处理到输出样品整个过程的自动操作。此外在常规样品预处理功能的基础上,还集成了排气泡功能,使预处理芯片能够在太空微重力环境下对有气泡的体液进行体液预处理。预处理仪集微泵微阀驱动机构和芯片液面位置检测机构于一体,能够实现多种体液预处理模式,且与芯片间无需任何管路及电连接,方便芯片更换。利用有限元仿真软件对预处理仪进行了航天环境下的各项力学分析,包括模态分析、加速度过载分析、正弦扫描分析及随机振动分析,得到了预处理仪机械结构在不同载荷条件下的应力分布,结果显示最大应力值为57.37 MPa,经过校核得知满足航天环境强度要求。最后,基于制作的排气混合预处理芯片进行了预处理实验,结果表明芯片的排气和混合效果良好。 Pretreatment microfluidic chip and instrument for aerospace medicine were designed and de- veloped based on microfluidics technology to realize astronauts' body fluids (saliva, urine, blood, etc) medical assay in microgravity environment. The chips integrated with micropumps and microvalves, can automatically implement total pretreatment processes including sample introduction, different kinds of pretreatments and sample delivering out through the instrument operation. At the same time, the chips integrated a degassing function, assuring that it can be suitable to deal with the body fluids with bubbles and be used in microgravity environment. The pretreatment instrument consists of driv- ing mechanisms of micropumps and microvalves and a detection module of liquid level, so it can be uti- lizable for different pretreatments without any pipe and electric connection, letting replace chips easi- ly. All mechanical analyses in aerospace environment for instrument were conducted by finite elements simulation software, including modal analysis, overload analysis of accelerated speed, sinusoid scan a-nalysis and random vibration analysis to obtain stress distribution of mechanical structure of pretreat- ment instrument in different load conditions. The results indicate that maximal stress value was 57.37 MPa, satisfying the strength requirement of space environment. Finally, pretreatment experi- ment was conducted based on mixed pretreatment chip of degassing mode to indicate good effect of de- gassing and mix of chip in the result.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2017年第8期2083-2089,共7页 Optics and Precision Engineering
基金 国家重大科学仪器设备开发专项"航天医学体液研究设备开发与应用"(2013YQ19046701)
关键词 航天医学 体液预处理 微流控芯片 排气 混合 Aerospace medicine pretreatment of body fluid micro-fluidic chip degassing mix
  • 相关文献

参考文献5

二级参考文献81

  • 1夏伟强,樊尚春,邢维巍,刘长庭,王俊锋,李天志.空间细胞生物学研究的新进展[J].航天器环境工程,2010,27(6):784-794. 被引量:4
  • 2魏金河.失重生理效应的层次特征[J].航天医学与医学工程,1994,7(2):134-139. 被引量:7
  • 3宋健,刘旭峰,苗丹民.航天失重环境对空间定向的影响[J].航天医学与医学工程,2006,19(5):388-390. 被引量:4
  • 4Glasauer S,Mittelstaedt H.Perception of spatial orientation in microgravity[J].Brain Res Rev,1998,28 (1-2):185-193. 被引量:1
  • 5Reschke MF,Bloomberg JJ,Harm DL,et al.Posture,locomotion,spatial orientation,and motion sickness as a function of space flight[J].Brain Res Rev,1998,28 (1-2):102-117. 被引量:1
  • 6Fowler B.A review of cognitive and perceptual motor performance in space[J].Aviat Space Environ Med,2000,71(9):A66-A68. 被引量:1
  • 7Howard IP,Childerson L.The contribution of motion,the visual frame,and visual polarity to sensations of body tilt[J].Perception,1994,23(7):753-762. 被引量:1
  • 8Oman CM,Skwersky A.Effect of scene polarity and head orientation on illusions in a tumbling virtual environment[J].Aviat Space Environ Med,1997,68(7):649. 被引量:1
  • 9Linenger JM.Off the Planet:Surviving Five Perilous Months Aboard the Space Station Mir[M].New York:McGraw-Hill,2000.96-99. 被引量:1
  • 10Hu G,Howard IP.The role of intrinsic and extrinsic polarity in generating reorientation illusions[J].Investigative Opthalmology and Visual Science,1999,40(S):S801. 被引量:1

共引文献17

同被引文献45

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部