摘要
Si-Miao-Wan(SMW), a tradiational Chinese medicinal formula consisting of Atractylodis Rhizoma, Phellodendri Chinensis Cortex, Coicis Semen, and Achyranthis Bidentatae Radix, has been used for the treatment of gout and gouty arthritis for many years. In the present study, a liquid chromatography quadrupole-time-of-flight mass spectrometry(LC-Q-TOF/MS) method was established to identify the multiple constituents of SMW and its metabolites in rat biological samples after oral administration. A total of 48 compounds in SMW, including 21 alkaloids, 12 organic acids, 2 terpenes, 3 lactones, 2 phytosterols, and 8 other compounds, were tentatively characterized with the diagnostic-ion filtering strategy. Based on the diagnostic ions applied to identify compounds in SMW, 28 prototype compounds and 10 metabolic compounds were detected in the biological samples. This was the first comprehensive drug metabolism investigation of SMW in rats. The developed method could be a useful means for identifying the multi-components in SMW and the metabolic components. The results may help explore the possible metabolic processes and mechanism of action for SMW in vivo.
Si-Miao-Wan(SMW), a tradiational Chinese medicinal formula consisting of Atractylodis Rhizoma, Phellodendri Chinensis Cortex, Coicis Semen, and Achyranthis Bidentatae Radix, has been used for the treatment of gout and gouty arthritis for many years. In the present study, a liquid chromatography quadrupole-time-of-flight mass spectrometry(LC-Q-TOF/MS) method was established to identify the multiple constituents of SMW and its metabolites in rat biological samples after oral administration. A total of 48 compounds in SMW, including 21 alkaloids, 12 organic acids, 2 terpenes, 3 lactones, 2 phytosterols, and 8 other compounds, were tentatively characterized with the diagnostic-ion filtering strategy. Based on the diagnostic ions applied to identify compounds in SMW, 28 prototype compounds and 10 metabolic compounds were detected in the biological samples. This was the first comprehensive drug metabolism investigation of SMW in rats. The developed method could be a useful means for identifying the multi-components in SMW and the metabolic components. The results may help explore the possible metabolic processes and mechanism of action for SMW in vivo.
基金
supported by the National Natural Science Foundation of China(No.81573705)
the Natural Science Foundation of Jiangsu Province(No.BK20171392)
the Priority Academic Program Development of Jiangsu Higher Education Institutions