期刊文献+

邻居匹配与局部约束线性编码的图像分类方法 被引量:2

Image classification method combining with neighborhood matching and locality-constrained linear coding
下载PDF
导出
摘要 为提高局部约束线性编码(locality-constrained linear coding,LLC)的效率,提出一种结合邻居匹配策略改进的LLC方法。依据输入向量的空间相关性,在采用LLC方法计算输入向量的近邻码值矩阵之前,计算输入向量与空间相邻的已编码输入向量之间的欧氏距离,用其推断输入向量与码本中所有码值之间欧氏距离的上下边界,依据距离下边界判决条件跳过部分码值与输入向量的距离计算,依据距离上边界快速求解输入向量的近似近邻码值矩阵,依据LLC方法进行向量编码。图像分类实验结果表明,该方法的分类正确率高,编码耗时少。 To improve the efficiency of locality-constrained linear coding (LLC) method, a modified LLC method improved by neighborhood matching was proposed. According to the spatial correlation of input vectors, the Euclidean distance was computed between the current input vector and its neighborhood input vectors that had encoded, before computing the nearest codeword matrix of the input vector using LLC method, to infer the up and down bounds of Euclidean distances between the current input vector and all codewords in codebook. Some distance computation between current input vector and part of codewords was skipped according to the down bound of distances, and the approximate nearest codeword matrix of the input vector was fast computed according to the up bound of distances, and LLC method was used to encode the input vector. Experimental results on image classification show that, the proposed method has high classification accuracy and less time-consumption of coding.
作者 田广强 张岐山 TIAN Guang-qiang ZHANG Qi-shan(College of Mechanical and Electronic Engineering, Huanghe Jiaotong University, Jiaozuo 454950, Chin)
出处 《计算机工程与设计》 北大核心 2017年第8期2217-2221,2261,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(034031122) 河南省科技攻关重点计划基金项目(122102210563 132102210215) 河南省高等学校重点科研项目计划基金项目(15B520008)
关键词 图像分类 局部约束线性编码 向量量化 码本 邻居匹配 image classification locality-constrained linear coding vector quantization codebook neighborhood matching
  • 相关文献

参考文献4

二级参考文献59

  • 1阳凡林,刘经南,赵建虎,独知行.基于遗传算法的BP网络实现海底底质分类[J].测绘科学,2006,31(2):111-114. 被引量:20
  • 2唐秋华,刘保华,陈永奇,周兴华,丁继胜.结合遗传算法的LVQ神经网络在声学底质分类中的应用[J].地球物理学报,2007,50(1):313-319. 被引量:27
  • 3唐秋华,刘保华,陈永奇,周兴华,丁继胜.基于自组织神经网络的声学底质分类研究[J].声学技术,2007,26(3):380-384. 被引量:8
  • 4Matungka R, Zheng Y F, Ewing R L. Image Registration Using Adaptive Polar Transform[J].IEEE Transactions on Image Processing, 2009,18 (1 O) : 2340-2354. 被引量:1
  • 5Song Z L,Li S,George T F. Remote sensing image regis- tration approach based on a retrofitted SIFT algorithm and Lissajous-curve trajectories [J]. Optics Express, 2010,18(2) : 513-522. 被引量:1
  • 6Wong A. An adaptive monte carlo approach to phase- based multimodal image registration[J]. IEEE Transac- tions on Information Technology in Biomedicine, 2010, 14 (1) :173-179. 被引量:1
  • 7Xiong Z,Zhang Y. A critical review of image registration methods[J]. International Journal of Image and Data Fu- sion, 2010,1 (2) : 137-158. 被引量:1
  • 8Lowe D G. Distinctive image features from scale-invariant keypoints[J]. Int. J. Comput. Vis. ,2004,60(2) : 91-110. 被引量:1
  • 9Bay H,Tuvtellars T,Gool L Van. SURF: speeded up ro- bust features[J]. Computer Vision and Image Understand- ng,2008,110(3):346-359. 被引量:1
  • 10Rong W, Chen H, et al. Mosaicing of Microscope Images based on SURF[C]. 24th International Conference Image and Vision Computing New Zealand (IVCNZ 2009) ,2009, 272-275. 被引量:1

共引文献48

同被引文献22

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部