期刊文献+

基于遗传算法的BP网络实现海底底质分类 被引量:20

Seabed texture classification using BP neural network based on GA
下载PDF
导出
摘要 本文利用灰度纹理共生矩阵和两个分维数作为特征矢量,采用遗传算法训练BP网络,进行海底底质监督分类。以海底侧扫声纳图像为例,通过实测数据验算,取得了理想的效果。 Side scan sonar imaging is one of the advanced methods for seabed study.In order to be utilized in other projects,such as ocean engineering,the image needs to be classified according to the distributions of different classes of seabed materials.In this paper,seabed image is classified according to BP neural network,and Genetic Algorithm is adopted in train network.The feature vectors are average intensity,six statistics of texture and two dimensions of fractal.It considers not only the spatial correlation between different pixels,but also the terrain coarseness.The texture is denoted by the statistics of the cooccurrence matrix.Double Blanket algorithm is used to calculate dimension.Because a uniform fractal may not be sufficient to describe a seafloor,two dimensions are calculated respectively by the upper blanket and the lower blanket.However,in sonar image,fractal has directivity,i.e.there are different dimensions in different direction.Dimensions are different in acrosstrack and alongtrack,so the average of four directions is used to solve this problem.Finally,the real data verify the algorithm.In this paper,one hidden layer including six nodes is adopted.The BP network is rapidly and accurately convergent through GA.Correct classification rate is 92.5% in the result.
出处 《测绘科学》 CSCD 北大核心 2006年第2期111-114,共4页 Science of Surveying and Mapping
基金 "基础地理信息与数字化技术"山东省重点开放实验室资助(SD040212) 国家自然科学基金项目(40474005)
关键词 BP网络 共生矩阵 分形 分类 遗传算法 BP network co-occurrence matrix fractal classification genetic algorithm
  • 相关文献

参考文献14

  • 1Stanic S,Goodman R R,Briggs K B,et al.ShallowWater Bottom Reverberation Measurements[J].IEEE Journal of Oceanic Engineering,1998,23 (3):203-210. 被引量:1
  • 2Michalopoulou Z,Alexandrou D,Moustier C.Application of Neural and Statistical Classifiers to the Problem of Seafloor Characterization[J].IEEE Journal of Oceanic Engineering,1995,20(3):190-197. 被引量:1
  • 3Stewart W K,Chu D,Malik S,et al.Quantitative Seafloor Characterization Using a Bathymetric Sidescan sonar[J].IEEE Journal of Oceanic Engineering,1994,19(4):599-610. 被引量:1
  • 4Alexandrou D,Pantzartzis D.A Methodology for Acoustic Seafloor Classification[J].IEEE Journal of Oceanic Engineering,1993,18(2):81-86. 被引量:1
  • 5Huseby R B,Milvang O,Solberg A S,et al.Seabed Classification from Multibeam Echosounder Data Using Statistical Methods[A].In:Oceans ' 93,IEEE Conference Proceedings[C],1993:229-233. 被引量:1
  • 6Preston,J M,Christney A C,Bloomer S F,et al.Seabed Classification of Multibeam Sonar Images[A].In:OCEANS,2001.MTS/IEEE Conference and Exhibition[C],2001,4:2616-2623. 被引量:1
  • 7Carrnichael D R,Linnett L M,Clarke S J,et al.Seabed classification through multifractal analysis of sidescan sonar imagery[J].Radar,Sonar and Navigation,IEEProceedings,1996,143(3):140-148. 被引量:1
  • 8Pace N G,Gao H.Swathe Seabed Classification[J].IEEE Journal of Oceanic Engineering,1988,13 (2):83-90. 被引量:1
  • 9Clarke H.Toward remote seafloor classification using the angular response of acoustic backscattering:a case study from multiple overlapping GLORIA data[J].IEEE Journal of Oceanic Engineering,1994,19 (1):112-127. 被引量:1
  • 10Stanic S,Goodman R R,Briggs K B.Shallow-Water Bottom Reverberation Measurements[J].IEEE Journal of Oceanic Engineering,1998,23(3):203 -210. 被引量:1

共引文献25

同被引文献166

引证文献20

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部