期刊文献+

遗传算法优化的BP神经网络遥感图像分类研究 被引量:14

Study on BP Neural Network Classification with Optimization of Genetic Algorithm for Remote Sensing Imagery
下载PDF
导出
摘要 以Matlab神经网络和遗传算法工具箱为平台,用量化共轭梯度法改进标准BP算法,采用GA优化BP网络的隐层神经元数目、初始权重,最后以香格里拉县ETM+图像为数据源,在DEM地形数据辅助下,训练网络使其收敛,仿真结果表明该方法优于最大似然分类法. In this paper,a new method is presented,in which the neural networks and genetic algorithm toolbox of the Matlab are used as the platform,the conjugate gradient method is adopted to improve the standard BP algorithm,and GA is employed to optimize the BP network to identify the number of hidden layer neurons and the initial weights.As an example,the ETM + remote sensing image of Shangri-La County is classified with this method.The results show that the Kappa coefficient is 0.831 7 and the overall classification accuracy is 84.52%,thus resulting in an improvement of 9.085,as compared with the maximum likelihood classification method.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第7期128-132,共5页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(40861009)
关键词 遗传算法 最优化 BP人工神经网络 遥感图像分类 genetic algorithm optimization BP neural networks remote sensing image classification
  • 相关文献

参考文献12

二级参考文献37

共引文献135

同被引文献159

引证文献14

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部