期刊文献+

单样本快速人脸不变特征提取方法 被引量:11

Fast facial descriptor extraction for single image based face recognition
原文传递
导出
摘要 本文提出一种快速人脸特征描述(FFD,fast facial descriptor)算法和基于权重的人脸图像相似度分数匹配策略,以解决加速鲁棒性特征(SURF,speed up robust features)在描述单样本人脸特征时出现的特征点分布不均匀和光照变化鲁棒性差的问题。首先通过重构积分图来增加位于细长边缘的特征点的数量;为了减少冗余特征,提出两幅训练图像对应特征点间的区别度概念,对训练样本中的特征点进行稀疏化;然后,根据人脸各区域对识别结果贡献度的不同对人脸各区域赋予不同权重,并根据加权计算人脸图像的相似度分数得出识别结果。在AR、Yale B和CMU PIE标准人脸数据库及真实身份证人脸库上进行了单样本人脸识别实验。结果表明,本文算法对具有光照、遮挡和表情变化的单样本人脸识别有很好的鲁棒性,耗时仅为0.042s;与目前典型的特征描述算法相比,本文算法的识别率最高可提升65%;虽然真实身份证人脸库中人脸图像受实际环境因素影响较大,但本文方法也可提高30%的识别率。 In this paper,a fast facial descriptor (FFD) algorithm and a face images similarity score matc- hing strategy are proposed to improve the uneven distribution of features and poor illumination robust- ness of speed up robust features (SURF) in describing features for single image face recognition. The in- tegral image is reconstructed to increase the number of features on the lathy edge of face image to allevi- ate the problems of SURF. In order to reduce the number of redundant features, the conception of dis- tinction between the corresponding features is introduced to extract sparse features on training images. According to the contribution to recognition rate, face image regions are weighted to calculate the simi- larity score between face images to conduct the final result. Experiments of single image based face rec- ngnition are conducted on AR,Yale B,CMU PIE databases and real-life ID card image database. The re- sults indicate that the proposed method is robust to single image based face recognition under illumina- tion,occlusion and expression changes,and the running time is only 0. 042 s. Compared with some other recent feature description methods, the proposed method can increase the recognition rate by up to 65%. Although the images in real-life ID card image database are greatly affected by actual environmental fac- tors,the recognition rate is increased by 30%.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第3期558-564,共7页 Journal of Optoelectronics·Laser
基金 国家自然科学青年基金(61105093) 重庆市重点科技攻关(CSTC2012-YYJSB40001)资助项目
关键词 单样本 人脸识别 积分图 single image face recognition integral image
  • 相关文献

参考文献19

  • 1TAN Xiao-yang, tHEN Song-can, ZHOU Zhi-hua, et al. Face recognition from a single image per person: A sur- vey[J]. Pattern Recognition, 2010,39 (9) : 1725-1745. 被引量:1
  • 2LIU Na, LAI Jian-huang, ZHENG Wei-shi. A facial sparse descriptor for single image based face recognition[J]. Neurocomputing, 2012,93(10):77-87. 被引量:1
  • 3Lowe D G. Object recognition from local scale-invariant features[J]. Computer Vision, 1999,2(9) : 1150-1157. 被引量:1
  • 4TAN Chun-lin,WANG Hong-qiao, PEI De-li. SWF-SIFT ap- proach for Infrared Face Recognition[J]. ELESEVlER Ts- inghua Science and Technology, 20]0,15 (3) : 357-362. 被引量:1
  • 5LIU Ce, Yuen J, Torralba A. SIFT flow: dense correspon- dence across scenes and its applications[J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence,2011,35(5):978-994. 被引量:1
  • 6GENG Cong, JIANG Xu-dong. Face recognition based on the multi-scale local image structures[J]. Pattern Recog- nition, 2011,44(10) : 2565-2575. 被引量:1
  • 7Bay H, Ess A,Tuytelaars T,et al. Speeded-up robust fea- tures(SURF) [J]. Oomputer Vision and Image Understand- ing, 2008,110(3) ; 346-359. 被引量:1
  • 8丁南南,刘艳滢,张叶,陈春宁,贺柏根.基于SURF-DAISY算法和随机kd树的快速图像配准[J].光电子.激光,2012,23(7):1395-1402. 被引量:40
  • 9DU Geng, SU Fei, Cai A. Face recognition using SURF features[J]. Pattern Recognition, 2009,7496 (28) : 131- 137. 被引量:1
  • 10DU Geng, SU Fei, Cat A. Face recognition using SURF features[J]. Pattern Recognition, 2009,7496 (28) : 131- 137. 被引量:1

二级参考文献19

  • 1Matungka R, Zheng Y F, Ewing R L. Image Registration Using Adaptive Polar Transform[J].IEEE Transactions on Image Processing, 2009,18 (1 O) : 2340-2354. 被引量:1
  • 2Song Z L,Li S,George T F. Remote sensing image regis- tration approach based on a retrofitted SIFT algorithm and Lissajous-curve trajectories [J]. Optics Express, 2010,18(2) : 513-522. 被引量:1
  • 3Wong A. An adaptive monte carlo approach to phase- based multimodal image registration[J]. IEEE Transac- tions on Information Technology in Biomedicine, 2010, 14 (1) :173-179. 被引量:1
  • 4Xiong Z,Zhang Y. A critical review of image registration methods[J]. International Journal of Image and Data Fu- sion, 2010,1 (2) : 137-158. 被引量:1
  • 5Lowe D G. Distinctive image features from scale-invariant keypoints[J]. Int. J. Comput. Vis. ,2004,60(2) : 91-110. 被引量:1
  • 6Bay H,Tuvtellars T,Gool L Van. SURF: speeded up ro- bust features[J]. Computer Vision and Image Understand- ng,2008,110(3):346-359. 被引量:1
  • 7Rong W, Chen H, et al. Mosaicing of Microscope Images based on SURF[C]. 24th International Conference Image and Vision Computing New Zealand (IVCNZ 2009) ,2009, 272-275. 被引量:1
  • 8Bouchiha R, Besbes K. Automatic remote-sensing image registration using SURF[C]. 2010 The 3rd International Conference on Machine Vision (ICMV 2010), 2010,406- 410. 被引量:1
  • 9Tola E,Lepetit V. A fast local descriptor for dense matc- hing[C]. IEEE Computer Society Conference on Comput- er Vision and Pattern Recognition. Washington, DO: IEEE Computer Society, 2008,1-8. 被引量:1
  • 10Tola E, Lepetit V. DAISY: an efficient dense descriptor applied to wide-baseline stereo[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010,32 (5) : 815-830. 被引量:1

共引文献39

同被引文献96

引证文献11

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部