期刊文献+

基于混合频率数据的大维协方差阵的估计及其应用 被引量:3

Estimation and Application Study on the Large Dimensional Covariance Matrix of Mixed-Frequency Data
原文传递
导出
摘要 大维数据给传统的协方差阵估计方法带来了巨大的挑战,数据维度和噪声的影响使得协方差阵的估计较为困难.在文章的研究中,将高频数据和低频数据相结合,提出了基于混合频率数据的协方差阵的估计和预测模型——MFD模型,MFD模型在解决了维数诅咒的同时还考虑了过去市场信息对协方差阵的影响,动态地估计和预测了未来的协方差阵.通过实证研究发现:较基于低频数据和高频数据的协方差阵估计和预测模型而言,MFD模型明显提高了高维协方差阵的估计和预测效率;并且将其应用在投资组合时,投资者获得了更高的投资收益和经济福利. High dimensional data poses great challenges to the traditional estimation of covariance, it is difficult to estimate the covariance matrix, because of the influence of data dimension and noise. In the study of this paper, we combine high frequency data and low frequency data, and put forward the estimation and prediction model of covariance matrix MFD model, which is based on the mixed frequency data. The MFD model not only solves the curse of dimensionality but also considers the impact of the past market information on the covariance matrix. The future covariance matrix is dynamic estimated and predicted. Through empirical studies, it is found that MFD model significantly improves the efficiency of estimation and prediction of large matrix and investors obtain higher returns and economical welfare when the MF model is applied in portfolio.
作者 刘丽萍
出处 《系统科学与数学》 CSCD 北大核心 2017年第6期1532-1540,共9页 Journal of Systems Science and Mathematical Sciences
基金 国家社会科学基金项目(16CTJ013) 贵州省教育厅2015年度普通本科高校自然科学研究项目(黔教合KY字[2015]423) 2015年全国统计科学研究项目(2015LY19)资助课题
关键词 混合频率数据 MFD模型 大维协方差降 Mixed-frequency data, MFD model, large covariance matrix.
  • 相关文献

参考文献2

二级参考文献17

  • 1王明进,陈奇志.基于独立成分分解的多元波动率模型[J].管理科学学报,2006,9(5):56-64. 被引量:21
  • 2Bauwens, L., Laurent, S. , Rombouts, J. Multivariate Garch Models: a Survey[J]. Journal of Applied Econometrics, 2006, (21). 被引量:1
  • 3Asai, M., McAleer, M. , Yu, J. Multivariate Stochastic Volatility: A Review[J]. Econometric Reviews, 2006, (25). 被引量:1
  • 4Corsi, F. Measuring and Modeling Realized Volatility: From Tick by Tick to long Memory[J]. Dissertation, Univerity of Lugano, 2005. 被引量:1
  • 5R. Chiriac , V. Voev. Long Memory Modeling of Realized Covariance Matrices[C]. Working Paper, University of Konstanz, 2007. 被引量:1
  • 6R. Chiriac , V. Voev. Modeling and Forecasting Multivariate Real- ized Volatility[C]. Working Paper, University of Konstanz, 2008. 被引量:1
  • 7S. Pong, M. B. Shackleton, S. J. Taylor, X. Xu. Forecasting Currency Volatility: A Comparison of Implied Volatilities and AR (FI) MA Mod- els[J]. Journal of Banking & Finance, 2004, (28). 被引量:1
  • 8Bauwens, L., S. Laurent, J. Rombouts: Multivariate GARCH Models: a Survey[J]. Journal of Applied Econometrics, 2006, (21). 被引量:1
  • 9F. X. Diebold , J. A. Lopez. Forecast Evaluation and Combination[A]. In C. S. Maddala, C. R. Rao, editors. Handbook of Statistics[Z]. 1996. 被引量:1
  • 10T. N. Falkenberry. High Frequency Data Filtering[R]. Technical Re- port, Tick Data, 2002. 被引量:1

共引文献1

同被引文献8

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部