期刊文献+

基于粗糙集相对分类信息熵和粒子群优化的特征选择方法 被引量:9

A feature selection approach based on rough set relative classification information entropy and particle swarm optimization
下载PDF
导出
摘要 特征选择是指从初始特征全集中,依据既定规则筛选出特征子集的过程,是数据挖掘的重要预处理步骤。通过剔除冗余属性,以达到降低算法复杂度和提高算法性能的目的。针对离散值特征选择问题,提出了一种将粗糙集相对分类信息熵和粒子群算法相结合的特征选择方法,依托粒子群算法,以相对分类信息熵作为适应度函数,并与其他基于进化算法的特征选择方法进行了实验比较,实验结果表明本文提出的方法具有一定的优势。 Feature selection,an important step in data mining,is a process that selects a subset from an original feature set based on some criteria. Its purpose is to reduce the computational complexity of the learning algorithm and to improve the performance of data mining by removing irrelevant and redundant features. To deal with the problem of discrete values,a feature selection approach was proposed in this paper. It uses a particle swarm optimization algorithm to search the optimal feature subset. Further,it employs relative classification information entropy as a fitness function to measure the significance of the feature subset. Then,the proposed approach was compared with other evolutionary algorithm-based methods of feature selection. The experimental results confirm that the proposed approach outperforms genetic algorithm-based methods.
出处 《智能系统学报》 CSCD 北大核心 2017年第3期397-404,共8页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(71371063) 河北省自然科学基金项目(F2017201026) 浙江省计算机科学与技术重中之重学科(浙江师范大学)资助项目
关键词 数据挖掘 特征选择 数据预处理 粗糙集 决策表 粒子群算法 信息熵 适应度函数 data mining feature selection data preprocessing rough set decision table particle swarm optimization information entropy fitness function
  • 相关文献

参考文献3

二级参考文献24

  • 1李霞,张田文,郭政.一种基于递归分类树的集成特征基因选择方法[J].计算机学报,2004,27(5):675-682. 被引量:26
  • 2李颖新,刘全金,阮晓钢.一种肿瘤基因表达数据的知识提取方法[J].电子学报,2004,32(9):1479-1482. 被引量:13
  • 3邹涛,张翠,田新广,张尔扬.概念级误用检测系统的认知能力研究[J].电子学报,2004,32(10):1694-1697. 被引量:1
  • 4边肇祺.模式识别[M].北京:清华大学出版社,1987.. 被引量:19
  • 5Liu H, Sun J, Liu L, et al. Feature selection with dynamic mutual information[ J ]. Pattern Recognition, 2009,42 ( 7 ) : 1330 - 1339. 被引量:1
  • 6Zhang Daoqiang, Chen Songcan, Zhou Zhi-Hua. Constraint score.A new filter method for feature selection with pair- wise constraints[ J ]. Pattern Recognition, 2008,41 ( 5 ) : 1440 - 1451. 被引量:1
  • 7Guyon I, Weston J, Barnhil S, et al. Gene selection for cancer classification using support vector machines [ J]. Machine learning, 2002,46 ( 1 - 3 ) : 389 - 422. 被引量:1
  • 8Kennedy J, Eberhart R C. Particle swarm optimization[ A]. Proceedings of International Conference on Neutral Net- works IV[ C ]. Piscataway NJ : IEEE Service Center, 1995. 1942 - 1948. 被引量:1
  • 9Kennedy J,Eberhart RC. A discrete binary version of theparticle swarm algorithm[ A]. Proceedings of IEEE Inter- national Conference on Systems, Man, and Cybernetics [C]. Washington: 1EEE, 1997. 4104 - 4109. 被引量:1
  • 10Lin SW, Ying KC, Chen SC, et al. Particle swarm optimi- zation for parameter determination and feature selection of support vector machines [ J ]. Expert Systems with Appli- cations,2008,35(4) : 1817 - 1824. 被引量:1

共引文献14

同被引文献72

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部