期刊文献+

基于小波降噪和盲源分离算法的信号分离方法研究 被引量:6

Signal Separation Method Based on Wavelet De-noising Algorithm and Blind Source Separation Algorithm
下载PDF
导出
摘要 针对含噪情况下的盲源分离问题,将小波降噪方法引入盲源分离模型之中,对两种小波降噪与盲源分离算法结合的信号分离方法,即预降噪+盲源分离,以及预降噪+盲源分离+后降噪,从理论上进行了原理与特点分析,并通过数值仿真比较了不同信噪比情况下两种方法对于混合信号的分离效果。仿真表明,采用小波降噪与盲源分离结合的信号分离方法,相比于单纯采用盲源分离算法,能够大大提高信号的分离效果;预降噪+盲源分离+后降噪的信号分离方法比采用预降噪+盲源分离的信号分离方法效果普遍提高。 Aiming at the problem of blind source separation in noisy environment, wavelet de-noising method is introduced into blind source separation model. Two separation methods, pre-denoising + blind source separation algorithm, and pre-denoising + blind source separation algorithm + post-denoising, are analyzed theoretically. Then, comparison is made to the separation results of the two methods through digital simulation. The simulation shows that: 1 ) Compared with the method only using blind source separation algorithm, the separation method combining wavelet de-noising with blind source separation algorithm has much better separation effect; and 2 ) The separation effect of pre-denoising + blind source separation algorithm + post-denoising is generally better than that of pre-denoising + blind source separation algorithm.
出处 《电光与控制》 北大核心 2017年第7期7-11,共5页 Electronics Optics & Control
基金 国家自然科学基金(61372040) CEMEE国家重点实验室开放课题(CEMEE2015Z0302B)
关键词 小波降噪 盲源分离 自然梯度法 等变自适应分解 相似系数 wavelet denoising blind source separation natural gradient method equivariant adaptivesource separation similarity coefficient
  • 相关文献

参考文献8

二级参考文献52

  • 1罗志增,徐斌.基于小波消噪和盲源分离的脑电信号处理方法[J].华中科技大学学报(自然科学版),2011,39(S2):157-160. 被引量:4
  • 2Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis[ M]. New York: John Wiley & Sons, 2001. 被引量:1
  • 3HyvSrinen A, Oja E. A fast fixed-point algorithm for independent component analysis[ J]. Neural Computation, 1997 , 9(7):1483-1492. 被引量:1
  • 4Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[ J] . IEEE Transactions on NeuralNetworks, 1999,10(3) : 626-634. 被引量:1
  • 5Zarzoso V,Comon P, Kallel M. How fast is FastICA[ C]//Proc. EUSIPCO-2006, XIV European Signal Processing Confer-ence. 2006 : 38-53. 被引量:1
  • 6Zarzoso V,Comon P. Comparative speed analysis of FastICA [ C ]//Proc. ICA-2007 , 7th International Conference on Inde-pendent Component Analysis and Signal Separation. 2007 : 293-300. 被引量:1
  • 7Zarzoso V,Comon P. Robust Independent Component Analysis by Iterative Maximization of the Kurtosis Contrast with Algebra-ic Optimal Step Size[ J]. IEEE Transactions on Neural Networks, 2010,21(2) : 248-261. 被引量:1
  • 8Gabor D. Theory of communication [ J ]. IEEE, 1946,93 ( 3 ) :429-457. 被引量:1
  • 9Brito N S D, Souza B A, Pires F A C. Daubechies wavelets in quality of electrical power[ C ]//The 8th Internationa Conference on Hormonics and Quality of Power(ICHQP'98). Athens : IEEE, 1998:511-515. 被引量:1
  • 10Poisson O, Riou P, Meunier M. Detection and measurement of power quality disturbances using wavelet transform [ J ]. IEEE Trans on Power Delivery,2001 , 15(3 ) : 1 039-1044. 被引量:1

共引文献30

同被引文献40

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部