期刊文献+

海面小目标分数域检测快速算法

A Fast Algorithm for Detecting Small Targets on Sea Surface in Fractional Domain
下载PDF
导出
摘要 针对海杂波背景下小目标检测困难的问题,为解决传统分数阶傅里叶变换(FRFT)算法检测性能不稳定、运算量大、检测效率低等问题,提出新的海杂波中小目标检测快速新算法。利用CEMD-RobustICA去噪算法抑制海杂波,减小海杂波对双正交傅里叶变换(BFT)与简明分数阶傅里叶变换(CFRFT)性能的影响,通过BFT-CFRFT算法进行小目标检测,将传统算法的二维搜索转换为两次一维搜索,大幅减小了运算量。利用IPIX实测数据验证新算法,实验结果表明:新算法有效抑制了海杂波,且大大减小了检测运算量,提高了目标检测准确性与时效性,并且在HH极化条件下检测性能最好。新算法检测效率高,性能稳定,有利于在实际工程中广泛应用。 In the background of sea clutterit is difficult to detect small targets on sea surfaceand the traditional Fractional Fourier Transform(FRFT)algorithm has unstable detection performancelarge computation amount and low detection efficiency.To solve the problemsa new fast algorithm for detecting small targets in sea clutter is proposed.CEMD-RobustICA denoising algorithm is used to suppress sea clutterso as to weaken its influence on the performance of Bi-orthogonal Fourier Transform(BFT)and Concise Fractional Fourier Transform(CFRFT).BFT-CFRFT algorithm is used to detect small targetswhich transforms the two-dimensional search of the traditional algorithm into two one-dimensional searchesso that the amount of computation is greatly reduced.IPIX measurement data is used to verify the new algorithmand the experimental results show that:1)The new algorithm can effectively suppress sea cluttergreatly reduce the amount of computationand improve the accuracy and timeliness of target detection with the best performance in HH polarization conditions;2)The new algorithm has high detection efficiency and stable performancewhich can be widely used in practical projects.
作者 唐建军 梁浩 朱张勤 金林 TANG Jianjun;LIANG Hao;ZHU Zhangqin;JIN Lin(Nanjing Institute of Electronic Technology Nanjing 210000,China)
出处 《电光与控制》 CSCD 北大核心 2021年第6期42-46,共5页 Electronics Optics & Control
关键词 海杂波 CEMD RobustICA 双正交傅里叶变换 简明分数阶傅里叶变换 sea clutter CEMD RobustICA Bi-orthogonal Fourier Transform(BFT) Concise Fractional Fourier Transform(CFRFT)
  • 相关文献

参考文献7

二级参考文献62

共引文献199

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部