期刊文献+

抽样率转换的分数阶Fourier域分析

Analysis of Sampling-Rate Conversion in the Fractional Fourier Domain
下载PDF
导出
摘要 为了节省计算量及存储空间,在一个信号处理系统中常常需要不同的抽样率及其相互之间的转换.而在分数阶Fourier域中分析信号完全可用较低的抽样频率来抽样(低于Nyquist抽样率),这就意味着建立在频域上的传统抽样率转换理论将不再适用.本文将建立在Fourier变换(频域)上的传统抽样率转换理论推广到了分数阶Fourier域,通过研究时域抽取和零值内插操作在分数阶Fourier域的表示及其含义,导出了基于分数阶Fourier变换的有理分数倍抽样率转换理论.可以看到,将分数阶Fourier变换的变换阶数取为π/2,便得到了与传统频域多抽样率理论完全一致的结果.最后,本文通过仿真对导出的分数阶Fourier域多抽样率理论进行了验证. In order to decrease the computation and storage load, different sampling-rates, together with the Sampling-rate Conversion,are often used in a system.When a signal is analyzed in the fractional Fourier domain,the lower sampling-rate could be adopted than the Nyquist sampling-rate, which means that the traditional sampling-rate conversion theory, founded in the frequency domain,could be disabled under the circumstances. The traditional sampling-rate conversion theory is generalized to obtain the version for the fractional Fourier transform (FRFT) .First,the formulas and signification of decimation and interpolation are studied in the fractional Fourier domain. Based on these results, the sampling-rate conversion theory for the FRFT with a rational fraction as conversion factor is deduced. It's obvious that the sampling-rate conversion theory for the FRFT changes to the traditional version when the FRFT order equals π/2. Finally, the theory obtained in this paper is verified by some simulations.
出处 《电子学报》 EI CAS CSCD 北大核心 2006年第12期2190-2194,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.60232010 60572094) 国防预研项目(No.6140445)
关键词 分数阶FOURIER变换 抽样率转换 抽取 内插 fractional Fourier transform sampling-rate conversion decimation interpolation
  • 相关文献

参考文献11

  • 1P P Vaidyanathan.Multirate digital filters,filter banks,polyphase networks,and applications:a tutorial[J].Proceedings of the IEEE,1990,78(1):56-93. 被引量:1
  • 2陶然等著..分数阶Fourier变换的原理与应用[M].北京:清华大学出版社,2004:180.
  • 3I S Yetik,A Nehorai.Beamforming using the fractional Fourier transform[J].IEEE Trans Signal Processing,2003,51(6):1663-1668. 被引量:1
  • 4Hong-Bo Sun,Guo-Sui Liu,et al.Application of the fractional Fourier transform to moving target detection in airborne SAR[J].IEEE Trans Aerospace and Electronic Systems,2002,38(4):1416-1424. 被引量:1
  • 5M Martone.A multicarrier system based on the fractional Fourier transform for time-frequency-selective channels[J].IEEE Trans Communications,2001,49(6):1011-1020. 被引量:1
  • 6B Hennelly,J T Sheridan.Fractional Fourier transform-based image encryption:phase retrieval algorithm[J].Optics Communications,2003,226:61-80. 被引量:1
  • 7张卫强,陶然.分数阶傅里叶变换域上带通信号的采样定理[J].电子学报,2005,33(7):1196-1199. 被引量:30
  • 8T Erseghe,P Kraniauskas,G Cariolaro.Unified fractional Fourier transform and sampling theorem[J].IEEE Trans Signal Processing,1999,47(12):3419-3423. 被引量:1
  • 9A I Zayed.A convolution and product theorem for the fractional Fourier transform[J].IEEE Signal Processing Letters,1998,5(4):101-103. 被引量:1
  • 10H M Ozaktas,O Arikan,et al.Digital computation of the fractional Fourier transform[J].IEEE Trans Signal Processing,1996,44(9):2141-2150. 被引量:1

二级参考文献24

  • 1Namias V. The fractional order Fourier and its application to quantum mechanics[J]. J Inst Appl Math, 1980,25(3):241- 265. 被引量:1
  • 2McBride A C, Kerr F H. On Namias' s fractional Fourier transforms [J]. IMA J Appl Math, 1987,39(2): 159- 175. 被引量:1
  • 3Almeida L B. The fractional Fourier transform and time-frequency representations[J] .IEEE Trans Signal Processing, 1994,42(11) :3084 -3091. 被引量:1
  • 4Ozaktas H M,Zalevsky Z,Kutay M A.The Fractional Fourier Transform with Applications in Optics and Signal Processing[M]. New York: John Wiley & Sons,2001. 被引量:1
  • 5Mendlovic D, Ozaktas H M. Fractional fourier transform in optic[J].Proc SPIE, 1999,3749:40 - 41. 被引量:1
  • 6Ozaktas H M,Barshan B,et al. Convolution,filtering, and mulitiplexing in fractional Fourier domains and their relationship to chirp and wavelet transforms[J]. J. Opt. Soc. Amer A, 1994,11 (2): 547 - 559. 被引量:1
  • 7Martone M. A multicarrier system based on the fractional Fourier transform for time- frequency- selective channels[J]. IEEE Trans Commun,2001,49(6): 1101 - 1020. 被引量:1
  • 8Xia X G. On bandlimited signals with fractional Fourier transform[J].IEEE Signal Processing Lett, 1996,3(3) :72- 74. 被引量:1
  • 9Zayed A I. On the relationship between the Fourier and fractional Fourier transforms[J]. IEEE Signal Processing Lett, 1996,3 (12): 310-311. 被引量:1
  • 10Almeida L B. Product and convolution theorems for the fractional fourier transform[J] .IEEE Signal Processing Lett, 1997,4(1):15- 17. 被引量:1

共引文献151

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部