期刊文献+

基于加权最小二乘支持向量机的欠定盲源分离 被引量:1

Undetermined Blind Source Separation Based on Weighted Least Square Support Vector Machine
下载PDF
导出
摘要 为了进一步提高欠定盲源分离算法中混合矩阵估计方法的性能,提出了一种基于加权最小二乘支持向量机(SVM)的欠定盲源分离混合矩阵估计方法。该方法利用信号的方向角度特征估计出有效信源信号个数,然后采用加权最小二乘支持向量机方法获得初始权值,每次将其中一个权值对应的样本点作为测试样本,其余点作为训练样本,依次对样本的误差变量进行更新,再根据权值计算公式实现所有权值的更新,进而确定最优分类平面,实现对观测信号的最优分类,最终估计出混合矩阵。实验结果表明,新算法是有效的,其平均误差是基于K-均值方法误差的0.2倍左右,是基于SVM算法平均误差的0.5倍左右。 To further improve the performance of the underdetermined blind source separation algorithm,an algorithm based on weighted least square support vector machine( WLS-SVM) is proposed. Firstly,it esti-mates the number of source signal using the characteristic of frequency domain signal. Secondly, it uses WLS-SVM to obtain the initial weight values. The sample point corresponding to one of the weight values is used as the test sample every time,and the other is used as training sample. The error variable is upda-ted sequentially,and then all weight values are updated according to the weight calculation formula to de-termine the optimal classification plane and realize optimal classification of observed signals to estimate the mixed matrix. Simulation results prove that the proposed algorithm has smaller error compared with tradi-tional algorithm. The error of proposed algorithm is twenty percent of that of K-means based method,and fifty percent of that of SVM-based method.
出处 《电讯技术》 北大核心 2015年第11期1200-1205,共6页 Telecommunication Engineering
基金 国家自然科学基金资助项目(61271115) 吉林市科技发展项目(2013625009)~~
关键词 欠定盲源分离 加权最小二乘支持向量机 K-均值聚类 矩阵估计 undetermined blind source separation weighted least square support vector machine K-means clustering matrix estimation
  • 相关文献

参考文献12

二级参考文献75

  • 1何昭水,谢胜利,傅予力.稀疏表示与病态混叠盲分离[J].中国科学(E辑),2006,36(8):864-879. 被引量:26
  • 2Comon P. Independent component analysis: A new concept [J]. Signal Processing, 1994, 36(3): 287-314. 被引量:1
  • 3Xie S L, He Z S, and Fu Y L. A note on Stoners conjecture of blind signal separation [J]. Neural Computation, 2005, 17(2): 321-330. 被引量:1
  • 4Bofill P and Zibulevsky M. Underdetermined blind source separation using sparse representations [J]. Signal Processing, 2001, 81(11): 2353-2362. 被引量:1
  • 5Li Y Q, Cichocki A, and Amari S. Analysis of sparse representation and blind source separation [J]. Neural Computation, 2004, 16(6): 1193-1234. 被引量:1
  • 6Li Y Q, Amari S, and Cichocki A, et al.. Underdetermined blind source separation based on sparse representations [J]. IEEE Trans. on Signal Processing, 2006, 54(2): 423-437. 被引量:1
  • 7Michael S L and Terrence J S. Learning overcomplete representations [J]. Neural Computation, 2000, 12(2): 337-365. 被引量:1
  • 8He Z S and Cichocki A. K-EVD clustering and its applications to sparse component analysis [C]. Independent Component Analysis and Blind Signal Processing, Charleston SC, USA, Mar. 5-8, 2006: 90-97. 被引量:1
  • 9Vapnik V. The Nature of Statistical Learning Theory [M]. New York, Spring Verlag, 1995: 30-105. 被引量:1
  • 10Platt J C. Sequential minimal optimization A fast algorithm for training support vector machines [C]. In: SchOlkopf B, Burges C J C, and Smola A J. (Eds.): Advances in Kernel Methods-Support Vector Learning. MIT Press, Cambridge, MA, 1998: 185-208. 被引量:1

共引文献24

同被引文献1

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部