期刊文献+

基于步态高斯图及稀疏表示的步态识别 被引量:5

Gait Recognition Based on Sparse Representation and Gait Gaussian Image
下载PDF
导出
摘要 为了突出步态特征的差异性,解决单一视角及跨视角下识别率低的问题,分析了步态高斯图及稀疏表示的原理,提出在步态高斯图的基础上,应用稀疏表示的方法来进行分类。提取的步态高斯图增加了不同人步态的差异性进而提高了步态识别率。该方法首先获取步态高斯图,其次获取测试阶段所需的过完备字典,最后通过测试样本的重构误差进而分类。实验结果表明:该方法显著提高了跨视角下的步态识别率,对穿大衣、携带背包下的步态识别具有很强的鲁棒性。 In order to highlight the difference in gait characteristics and solve the problem of low recognition rate in single and cross perspective, the principles of Gait Gaussian Image( GGI) and sparse representation were ana-lysed ,and proposed the method that applies sparse representation to recognition based on the Gait Gaussian Im-age. The extracted Gait Gaussian Image increases the gait difference of different people and then improves the gait recognition rate. Firstly, the Gait Gaussian Image was obtained, and then get the over-complete dictionary needed in the test period. Finally, the object was classifed according to the reconstruction error of test sam-ples. Experimental results show that this method significantly improves the gait recognition rate of cross perspective, and has strong robustness to the condition of carrying a coat or a bag.
出处 《科学技术与工程》 北大核心 2017年第4期250-254,共5页 Science Technology and Engineering
基金 国家自然科学基金(U1261114) 陕西省自然科学基金(2012JM8029) 陕西省教育厅专项科研计划(16JK1505)资助
关键词 步态识别 步态特征 步态高斯图 稀疏表示 gait recognition gait characteristic Gait Gaussian Image sparse representation
  • 相关文献

参考文献4

二级参考文献49

  • 1王科俊,侯本博.步态识别综述[J].中国图象图形学报,2007,12(7):1152-1160. 被引量:44
  • 2Zhang E H, Zhao Y W, Xiong W. Active energy image plus 2DLPP for gait recognition[J]. Signal Processing, 2010,62 (8) : 2295 - 2302. 被引量:1
  • 3Chen C H. Frame difference energy image for gait recognition with incomplete silhouettes[J]. Pattern Recognition Letters, 2009,30 ( 11 ) : 977 - 984. 被引量:1
  • 4Chen C H, Liang J M, Zhu X C. Gait recognition based on improved dynamic Bayesian networks [J]. Pattern Recognition, 2011,44 (4) : 988 - 995. 被引量:1
  • 5Bashir K, Xiang T, Gong S G. Gait recognition without subject eooperation[J]. Pattern Recognition Letters, 2010, 31 (13) : 2052 - 2060. 被引量:1
  • 6Huang K Z, Zheng D N, Sun J. Sparse learning for support vector classification. [J]. Pattern Recognition Letters, 2010,31(13) : 1944 - 1951. 被引量:1
  • 7Zhao M, Li S T, Kwok J. Text detection in images using sparse representation with discriminative dictionaries [J]. Image and Vision Computing, 2010,28(12) : 1590 - 1599. 被引量:1
  • 8Aharon M, Elad M, Bruekstein A M. The KSVD: an algorithm for designing of overcomplete dictionaries for sparse representations [ C ] // IEEE Transactions on Signal Processing. Haifa, 2006 : 4311 - 4322. 被引量:1
  • 9Pan W, Bui T D, Suen C Y. Text detection from scene imaages using sparse representation [C]//Proceeding of the 19th International Conference on Pattern Recognition ( ICPR' 08). Montreal: Concordia Univ, 2008 : 1-5. 被引量:1
  • 10Mairal J, Bach F, Ponce J, et al. Discriminative learned dictionaries for local image analysis [ C ] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR'08). Paris: INRIA, 2008:1 8. 被引量:1

共引文献38

同被引文献22

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部